• Europa Astrobiology Lander. The harsh radiation from the jovian magnetosphere breaks all chemical bonds in the top tens of centimeters of Europa’s surface, making it desirable that an astrobiology lander be capable of deriving material from a depth of at least 50 cm to analyze it for signatures of biological precursors or activity.

  • Icy Satellite Deep Driller. A study of ice cores from the tectonically active icy satellites will shed light both on the history and the chemical composition of any possible subsurface oceans. The deep driller should be capable of drilling down to, and analyzing samples (cores or well logs) taken from, depths of tens of meters. The challenge for such a mission is the fabrication of a remotely operated deep drill, which would require substantial operating power (several hundred watts). The drill could be installed on a mobile platform (like a rover) to provide multiple measurements from different geological regions. Deep/fast drilling capability may require power from a nuclear reactor.

  • Comet Nucleus and KBO Surface laboratories. Primitive bodies are diverse, ranging from asteroids in the main-belt and near-Earth space, to comets passing through the inner solar system, to Kuiper Belt objects. Before the return of a cryogenic sample from a comet nucleus back to Earth, much information could be collected about the nature of cometary ices and volatiles through in situ sampling of the ices. The low surface gravity of these bodies and the unknown nature of the surface materials would make developing such a laboratory a challenge.

Additional Rover Concepts

Rover concepts enhanced or enabled by RPS technology are, in heliocentric order, as follows:

  • Venus Mobile Laboratory. Such a mission would couple the challenge of building a rover that could investigate a larger area than allowed by a simple lander with the challenge of operating any equipment in such a hostile environment.

  • Lunar Polar Rover/Driller. Permanently shadowed craters at the lunar poles are believed to contain concentrations of hydrogen or its compounds, which may provide a resource for human use. To assess the scientific and resource potential of these deposits will require three-dimensional investigations within permanently shadowed craters. Long-lived rover and drilling missions require moderate amounts of power (hundreds of watts) for operation, which would be difficult to obtain from solar cells alone at the basin’s location near the Moon’s south pole. RPSs, on the other hand, could provide long-term thermal and electric power and, thus, enable a rover equipped with a 1- to 2-m coring device to range over distances of ~10 km and operate continuously through the long, cold lunar night.

  • Mars Advanced Science Laboratory. It is possible to envisage more elaborate versions of NASA’s planned Mars Science Laboratory equipped with, for example, more capable analytic instruments and the ability to drill beneath Mars’s thin, hostile near-surface layer. These capabilities, plus extended range and endurance, are significantly enhanced by the availability of power at a level of hundreds of watts or greater from RPSs. A somewhat similar concept, the Astrobiology Field Laboratory, has been studied for possible launch to Mars sometime in the next decade.2

  • Titan Surface Laboratory. The heliocentric distance of Titan, coupled with its dense atmosphere, makes the use of an RPS power source critical for any exploration on the surface. The images returned by the Huygens probe and Cassini’s radar system indicate that significant parts of Titan’s surface have the kind of muted relief that is ideally suited for long-range rover operations. A Mars Exploration Rover (MER)- or Mars Science Laboratory (MSL)-class rover, powered by an RPS, might be a less complex and risky approach to the exploration of Titan than the aerobot concepts discussed below and elsewhere in this report.

Additional Global Network Concepts

In addition to the Long-Lived Mars Network described in Chapter 4, other examples of network missions enhanced or enabled by RPSs are, in heliocentric order, as follows:

  • Mercury and Lunar Long-Lived networks. These missions are similar in concept to the networks that could



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement