FIGURE 8.1 Diagram illustrating that there is little justification for astronomical interferometry on baselines longer than the Earth-Sun distance (1 AU). Sloping black lines: angular resolution as a function of baseline (ordinate) and photon wavelength λ, frequency υ, or energy E (abscissas). One arcsecond is 1/3600 degree. Right ordinate: bottom to top, baselines of the Keck Telescope, Palomar Testbed Interferometer (PTI), Very Large Array (VLA), Earth’s radius , the distance to the Earth-Sun L2 point , the Earth-Sun separation (1 AU), and the semi-major axis of Pluto’s orbit. Lightface labels—angular diameters of a Sun-like star at 100 pc, of the horizon of the 3 billion solar-mass black hole in the nearby galaxy M87 (the black hole in the center of the Milky Way appears 3 times larger), of the 100 million solar-mass black holes in typical quasars at redshift of 2, and of a nearby neutron star at 1-kpc distance. Boldface labels: resolution needed to obtain a 1 percent parallax (π) or resolve a 1-year period solar-mass binary at 10 kpc and to measure a 1 percent parallax at a distance of 100 Mpc. Scattering in the interstellar medium causes the images formed by combinations of wavelength and baseline falling in the hatched region (upper left) to be blurred to the size of the region’s lower boundary line. Thin horizontal lines: strong multipath scattering. Dotted vertical lines: weak scattering, with images appearing as scattered speckles; some information about source size may remain.

  • Gamma-Ray Burst Locator. Time-of-arrival triangulation on ≈50-AU baselines can localize the sources of gamma-ray bursts (GRBs) down to the arcsecond scales required for unambiguous identification of the host galaxy. The Swift mission may demonstrate that all GRBs have afterglow emissions that can be used to locate the host galaxy. But if there are classes of GRBs with no localizable afterglow, a long-baseline GRB network would be scientifically compelling. GRB detector sensitivities would be enormously degraded by the gamma-ray background from a nearby fission reactor, but GRB detectors have successfully coexisted with the radioisotope thermoelectric generator (RTG) on the Ulysses spacecraft. For a small payload like a GRB detector, solar sails



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement