nies invest more in research and development than any other business sector.” However, the effects of many chemicals on human health and the environment are far from benign, and are often largely unknown. Monitoring and controlling chemicals in the environment is also costly; each year more than $1 billion is spent just on cleaning up hazardous waste Superfund sites.9

Trends in fossil fuel consumption as well as compliance with regulatory policies have led to a significant evolution of the chemical processing industry (CPI) over the past 50 years. These forces, combined with transparency requirements, liability risks, and health indicators make sustainability goals, along with innovation, increasingly integral components of a company’s ability to compete in the marketplace. These goals in the business world are now often referred to as the “triple bottom line.”10 At the same time, the trend toward decreasing,11 or at least flat research and development spending in industry as a whole makes it difficult to advance the scientific knowledge to support these goals.

Going forward, the chemical industry is faced with a major conundrum—the need to be sustainable (balanced economically, environmentally, and socially in order to not undermine the natural systems on which it depends)—and a lack of a more coordinated effort to generate the science and technology to make it all possible. As the feedstock industry for modern society, the chemical industry thus plays a major role in the sustainability effort—to advance the science and technology to support the design, creation, processing, use, and disposal of chemical substances that provide a foundation for sustainability.

The set of Grand Challenges and accompanying research needs to move towards chemical products, processes, and systems that will help achieve the broader goals of sustainability are summarized below. Although the Grand Challenges are numbered, they are all important in the context of this report and to the triple bottom line of the chemical industry now and in the future. However, Figure ES-1 illustrates how the different Grand Challenges (ovals) address the sustainability transition (large arrows) from the current paradigm to the ideal vision over the course of two critical time frames:

9  

Government Accountability Office. June 30, 2005. Hazardous Waste Programs: Information on Appropriations and Expenditures for Superfund, Brownfields, and Related Programs. GAO-05-746R.

10  

Elkington, J. 1997. in Cannibals with Forks: The Triple Bottom Line of 21st Century Business. Oxford: Capstone Publishing.

11  

NSF (National Science Foundation) InfoBrief (NSF 04-320). May, 2004. Largest Single-Year Decline in U.S. Industrial R&D Expenditures Reported for 2002.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement