building blocks—lignin chemistry, a re-examination of cellulose chemistries, or other biomass-based chemistries that were historically viewed as uneconomic or difficult. This “catalog” of potential starting chemicals would provide the research community with starting points in the development of alternative pathways to achieve the desired end materials.

Future fuel alternatives. Because of the competing needs for feedstocks and fuels, clearly, it is a grand challenge for the chemical enterprise to lead the way in the development of future fuel alternatives. These alternatives could be in the development of hydrogen, landfill gas, and biomass fuel sources utilizing fuel cell, wind, solar heating, and photovoltaic technology. A great example of such efforts includes the integration of producing fuels and feedstocks from biomass via biorefineries, such as the DuPont-DOE Integrated Corn Biorefinery project. Such efforts need to be emulated and expanded.

Integration of process chemistries. In addition to developing future fuel alternatives, the chemical enterprise should accelerate its efforts to examine the technologies needed to fully integrate production activities—thereby reducing current energy needs. Examples of where this is already taking place include smaller niche operations such as the pulp and paper industry where waste products are utilized as fuel for the process. These applications could be expanded and potentially integrated into additional processes.

Development of platform chemicals (sugar, lignin, etc.) from biomass that lead to basic building block chemicals. There needs to be an alternative means of producing the basic commodity chemicals such as simple aliphatics and aromatics since the chemistry will be quite different from transforming fossil fuel hydrocarbons. Much research is still needed to determine the means of producing these materials from sugars, starch, lignin, and cellulose. An example includes the efforts by the DOE, which identified sugar-based chemical building blocks via biochemical or chemical conversion as a starting point for the development of biomass as a feedstock for commodity chemicals. Such building block chemicals are seen as essential in the development of a commercially viable biomass generated feedstock.

Understanding of the basic chemical processes to transform the platform chemicals to the final production processes. While the “catalog” of potential starting chemicals is extremely important, the development of technologies to produce these chemicals is just as important. The chemical enterprise is going to have to address the pretreatment as well as the

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement