the treatment of infectious diseases in the past several decades are derived from bacterial products that have been used as weapons against other bacteria for millions of years, and the ability of bacteria to develop resistance to them is an ancient evolutionary defense tactic. Similarly, the human immune system has evolved in the midst of this microbial world to provide highly nuanced and carefully regulated responses to the myriad microorganisms it encounters. Perhaps most discordant with the “human versus microorganism” point of view is the increasing realization that all humans live in intimate community with thousands of microbial species—the natural microbiota of our skins, guts and oral cavities—and that these microorganisms affect human health in many positive ways from development, to nutrition, to susceptibility to disease. In short, humans have evolved in and exist now in a world overwhelmingly dominated by microorganisms, the vast majority of which do not cause disease.

In such a world, the idea of developing a “gorillacillin” becomes hopelessly complicated. How would such a drug distinguish microbial friend from foe? How would it simultaneously outwit the varied defense tactics developed over millions of years by thousands of microorganisms? How could a single drug improve the performance of the highly complicated and already extremely effective human immune system? These questions are daunting, even discouraging. At the same time, antibiotics have saved millions of lives and interventions exploiting the human immune system—especially immunization—have vastly reduced human vulnerability to infectious disease. If “gorillacillin” is an unrealistic—perhaps even an undesirable—goal, it is nevertheless clear that effective antimicrobial therapeutics have been and can again be developed.

Both workshops focused on generating ideas for innovative research approaches that would contribute to the development of new antimicrobial therapeutics. There was widespread recognition, however, that the road from a brilliant idea to a clinically available treatment is long and full of pitfalls. Differing approaches to antibiotic use in different countries, declining investment in antimicrobials by large pharmaceutical companies, increasing costs of clinical trials, and complicated regulatory and legal environments, are just a few of the obstacles to bringing new compounds rapidly from the laboratory to the clinic. Interesting and important as these issues are, the workshops were not designed to address them because the committees were specifically charged to focus on the scientific possibilities. The interested reader is referred to a recent report by the Infectious Diseases Society of America, Bad Bugs, No Drugs: As Antibiotic Discovery Stag-

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement