National Academies Press: OpenBook
Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×

GEOLOGICAL AND GEOTECHNICAL ENGINEERING IN THE NEW MILLENNIUM

OPPORTUNITIES FOR RESEARCH AND TECHNOLOGICAL INNOVATION

Committee on Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation

Committee on Geological and Geotechnical Engineering

Board on Earth Sciences and Resources

Division on Earth and Life Studies

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES

THE NATIONAL ACADEMIES PRESS
WASHINGTON, D.C.
www.nap.edu

Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×

THE NATIONAL ACADEMIES PRESS
500 Fifth Street, N.W. Washington, DC 20001

NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance.

This study was supported by Grant No. CMS-0229020 between the National Academy of Sciences and the National Science Foundation. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the organizations or agencies that provided support for the project.

International Standard Book Number 0-309-10009-7

Additional copies of this report are available from the
National Academies Press,
500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu.

Copyright 2006 by the National Academy of Sciences. All rights reserved.

Printed in the United States of America

Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×

THE NATIONAL ACADEMIES

Advisers to the Nation on Science, Engineering, and Medicine

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Ralph J. Cicerone is president of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Wm. A. Wulf is president of the National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Ralph J. Cicerone and Dr. Wm. A. Wulf are chair and vice chair, respectively, of the National Research Council.

www.national-academies.org

Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×

COMMITTEE ON GEOLOGICAL AND GEOTECHNICAL ENGINEERING IN THE NEW MILLENNIUM: OPPORTUNITIES FOR RESEARCH AND TECHNOLOGICAL INNOVATION

Members

JANE C. S. LONG, Chair,

Lawrence Livermore National Laboratory, Livermore, California

BERNARD AMADEI,

University of Colorado, Boulder

JEAN-PIERRE BARDET,

University of Southern California, Los Angeles

JOHN T. CHRISTIAN,

Waban, Massachusetts

STEVEN D. GLASER,

University of California, Berkeley

DEBORAH J. GOODINGS,

University of Maryland, College Park

EDWARD KAVAZANJIAN JR.,

Arizona State University, Tempe

DAVID W. MAJOR,

GeoSyntec Consultants Inc., Ontario, Canada

JAMES K. MITCHELL,

Virginia Polytechnic Institute and State University, Blacksburg

MARY M. POULTON,

The University of Arizona, Tucson

J. CARLOS SANTAMARINA,

Georgia Institute of Technology, Atlanta

Staff

ANTHONY R. DE SOUZA, Director

JENNIFER T. ESTEP, Financial Associate

CAETLIN M. OFIESH, Research Assistant

RADHIKA CHARI, Senior Project Assistant (until March 2004)

AMANDA M. ROBERTS, Program Assistant (from July 2004)

Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×

COMMITTEE ON GEOLOGICAL AND GEOTECHNICAL ENGINEERING

Members

NICHOLAS SITAR, Chair,

University of California, Berkeley

SUSAN E. BURNS,

University of Virginia, Charlottesville

JOHN T. CHRISTIAN,

Waban, Massachusetts

KIM DE RUBERTIS,

Cashmere, Washington

THOMAS W. DOE,

Golder Associates, Redmond, Washington

JOANNE T. FREDRICH,

Sandia National Laboratories, Albuquerque, New Mexico

LARRY W. LAKE,

The University of Texas, Austin

RAY E. MARTIN,

Ray E. Martin, LLC, Ashland, Virginia

MARY M. POULTON,

The University of Arizona, Tucson

DONALD W. STEEPLES,

University of Kansas, Lawrence

Staff

SAMMANTHA L. MAGSINO, Program Officer

AMANDA M. ROBERTS, Program Assistant

Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×

BOARD ON EARTH SCIENCES AND RESOURCES

Members

GEORGE M. HORNBERGER, Chair,

University of Virginia, Charlottesville

M. LEE ALLISON,

Office of the Governor, Topeka, Kansas

STEVEN R. BOHLEN,

Joint Oceanographic Institutions, Washington, D.C.

ADAM M. DZIEWONSKI,

Harvard University, Cambridge, Massachusetts

KATHERINE H. FREEMAN,

The Pennsylvania State University, University Park

RHEA L. GRAHAM,

New Mexico Interstate Stream Commission, Albuquerque

ROBYN HANNIGAN,

Arkansas State University, State University

V. RAMA MURTHY,

University of Minnesota, Minneapolis

RAYMOND A. PRICE,

Queen’s University, Kingston, Ontario

MARK SCHAEFER,

NatureServe, Arlington, Virginia

BILLIE L. TURNER II,

Clark University, Worcester, Massachusetts

STEPHEN G. WELLS,

Desert Research Institute, Reno, Nevada

THOMAS J. WILBANKS,

Oak Ridge National Laboratory, Oak Ridge, Tennessee

Staff

ANTHONY R. DE SOUZA, Director

ELIZABETH A. EIDE, Senior Program Officer

DAVID A. FEARY, Senior Program Officer

ANNE M. LINN, Senior Program Officer

ANN G. FRAZIER, Program Officer

SAMMANTHA L. MAGSINO, Program Officer

RONALD F. ABLER, Senior Scholar

HEDY J. ROSSMEISSL, Senior Scholar

VERNA J. BOWEN, Administrative and Financial Associate

JENNIFER T. ESTEP, Financial Associate

TANJA E. PILZAK, Research Associate

CAETLIN M. OFIESH, Research Assistant

JAMES B. DAVIS, Program Assistant

JARED P. ENO, Program Assistant

AMANDA M. ROBERTS, Program Assistant

Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×

Acknowledgment of Reviewers

This report has been reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise, in accordance with procedures approved by the National Research Council’s (NRC) Report Review Committee. The purpose of this independent review is to provide candid and critical comments that will assist the institution in making its published report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process. We wish to thank the following individuals for their review of this report:


Braden Allenby, Arizona State University, Tempe

Chris Breeds, Sub Terra, North Bend, Washington

Corale Brierley, Brierley Consultancy LLC, Highlands Ranch, Colorado

John Dunicliff, Geotechnical Instrumentation Consultant, Devon, England

Henry Hatch, Former Chief of Engineers, U.S. Army, Oakton, Virginia

Elvin R. Heiberg, III, Heiberg Associates, Arlington, Virginia

Norbert Morgenstern, University of Alberta, Edmonton, Canada

Page viii Cite
Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×

Although the reviewers listed above have provided many constructive comments and suggestions, they were not asked to endorse the conclusions or recommendations, nor did they see the final draft of the report before its release. The review of this report was overseen by William Fisher, The University of Texas at Austin. Appointed by the NRC, he was responsible for making certain that an independent examination of the report was carried out in accordance with institutional procedures and that all review comments were carefully considered. Responsibility for the final content of this report rests entirely with the authoring committee and the institution.

Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×

Preface

The charge to this committee—to envision the future of geotechnology—is at once a grand challenge and a problem. In many ways, geotechnology is a mature field having come to its majority in the last 50 years. Many serious problems have been solved. We know how to build strong foundations, safe dams, and stable roads and tunnels. We have a good understanding about the behavior and protection of groundwater, how to extract the petroleum resources, and develop a geothermal field. We understand quite a bit about the soil conditions that lead to liquefaction during an earthquake or make landslides likely. If there is a major problem, it is that the state of the practice worldwide does not match the state of the art. Even when the knowledge exists, economics or ignorance lead to harmful, suboptimal, and dangerous practice. People still build trailer parks on flood plains.

Those of us who have been trained to this state of the art are trained to keep digging deeper (in the intellectual sense) and to refine and improve our understanding and methods. We are more tuned to what we still do not know and cannot yet do versus reflecting on how far we have come and how much we are now capable of compared to the past. Given the approaches and lexicons we are used to, we have a kind of Zeno’s paradox in moving forward. Each step forward is smaller than the last in comparison to the totality of progress

Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×

in the field. Quantum leaps are farther and fewer using the same paradigms, technology, and approaches.

The problems have also changed. We can no longer expect to do an engineering project that has no reference to the impacts of the design on social structures, economics, and the environment. Sustainability has become an imperative recognized by the engineering profession (see, for example, the World Federation of Engineering Organizations website, http://www.unesco.org/wfeo/) in general and the professional societies involving geoengineering (e.g., the American Society Civil Engineers, Society of Manufacturing Engineers, Society of Petroleum Engineers). Earth-type problems are now recognized on regional and global scales. Engineers need to embrace social science aspects of their problems if they are to develop acceptable designs.

Geoengineering as a discipline and practice can and should change. Geoengineers should look to entirely new technologies and approaches to solve problems faster, better, cheaper. The problems geoengineers solve are important to society, and the current technological constraints are in many cases less likely to be solved by beating them with old approaches than they are to be cracked by new technological and more interdisciplinary approaches. Geoengineers, with their focus on Earth are poised to expand their roles and lead in the solution of modern Earth systems problems, such as global change, emission free energy supply, global water supply, and urban systems.

Changing established fields of engineering is not easy. It is a truism that practitioners and researchers are most comfortable in the realm of their known approaches and problem spaces. It is perhaps more important to realize that geoengineers know that the problems they have been solving still need to be solved and the techniques and technology they currently use are still a propos. Part of moving ahead involves being able to feel the confidence that the significant progress made to date will not be lost through a love affair with the new and exciting. At the same time that this report promotes and encourages change, the committee also felt the stress of this change. As much as we found enthusiasm and genuine

Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×

excitement about the possibilities of the future, we were not immune to concerns about the future of support for, and education in, traditional geoengineering.

As chair, it is my hope that the readers of this report will be captured by the imaginative and creative possibilities of embracing whole new technological approaches to research and the migration to problems that have become dominant issues for our world today. If we do not find better ways to solve our traditional problems, economic and environmental concerns will push these solutions further and further out of reach. For example, we certainly know how to build underground infrastructure in cities, but we had to spend over $14.6 billion to construct Boston’s Central Artery and the disruption to the city was lengthy and extensive. Many such projects will be required in our cities but will we have the ability to do them if we cannot significantly decrease the cost, reliability and time of construction, not to mention our ability to manage them? The ability to build such structures as safe dams, extensive highways, and safe water supply systems was an imperative of the last century. Perhaps the most important imperative of this century is sustainability and the most salient feature of sustainability is the scale of the problem. Geoengineering is a great starting point for addressing many Earth system issues, and I see tremendous importance in this endeavor. It has been the committee’s privilege to learn, think, and write about this. We hope you become as interested in the possibilities as we are.

Finally, I would like to thank the committee members who worked so hard to complete this report.


Jane C. S. Long

Chair

Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×

This page intentionally left blank.

Page xiii Cite
Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×
Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×
Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×
Page R1
Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×
Page R2
Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×
Page R3
Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×
Page R4
Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×
Page R5
Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×
Page R6
Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×
Page R7
Page viii Cite
Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×
Page R8
Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×
Page R9
Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×
Page R10
Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×
Page R11
Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×
Page R12
Page xiii Cite
Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×
Page R13
Suggested Citation:"Front Matter." National Research Council. 2006. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, DC: The National Academies Press. doi: 10.17226/11558.
×
Page R14
Next: Summary »
Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation Get This Book
×
Buy Paperback | $60.00 Buy Ebook | $48.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The field of geoengineering is at a crossroads where the path to high-tech solutions meets the path to expanding applications of geotechnology. In this report, the term "geoengineering" includes all types of engineering that deal with Earth materials, such as geotechnical engineering, geological engineering, hydrological engineering, and Earth-related parts of petroleum engineering and mining engineering. The rapid expansion of nanotechnology, biotechnology, and information technology begs the question of how these new approaches might come to play in developing better solutions for geotechnological problems.

This report presents a vision for the future of geotechnology aimed at National Science Foundation (NSF) program managers, the geological and geotechnical engineering community as a whole, and other interested parties, including Congress, federal and state agencies, industry, academia, and other stakeholders in geoengineering research. Some of the ideas may be close to reality whereas others may turn out to be elusive, but they all present possibilities to strive for and potential goals for the future. Geoengineers are poised to expand their roles and lead in finding solutions for modern Earth systems problems, such as global change, emissions-free energy supply, global water supply, and urban systems.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!