below, a narrow concentration range of 0.7 to 1.2 mg/L is recommended when decisions are made to intentionally add fluoride into water systems. This lower range also occurs naturally in some areas of the United States. Information on the fluoride content of public water supplies is available from local water suppliers and local, county, or state health departments.


Since 1945, fluoride has been added to many public drinking-water supplies as a public-health practice to control dental caries. The “optimal” concentration of fluoride in drinking water for the United States for the prevention of dental caries has been set at 0.7 to 1.2 mg/L, depending on the mean temperature of the locality (0.7 mg/L for areas with warm climates, where water consumption is expected to be high, and 1.2 mg/L for cool climates, where water consumption is low) (PHS 1991). The optimal range was determined by selecting concentrations that would maximize caries prevention and limit enamel fluorosis, a dose-related mottling of teeth that can range from mild discoloration of the surface to severe staining and pitting. Decisions about fluoridating a public drinking-water supply are made by state or local authorities. CDC (2002a) estimates that approximately 162 million people (65.8% of the population served by public water systems) received optimally fluoridated water in 2000.

The practice of fluoridating water supplies has been the subject of controversy since it began (see reviews by Nesin 1956; Wollan 1968; McClure 1970; Marier 1977; Hileman 1988). Opponents have questioned the motivation for and the safety of the practice; some object to it because it is viewed as being imposed on them by the states and as an infringement on their freedom of choice (Hileman 1988; Cross and Carton 2003). Others claim that fluoride causes various adverse health effects and question whether the dental benefits outweigh the risks (Colquhoun 1997). Another issue of controversy is the safety of the chemicals used to fluoridate water. The most commonly used additives are silicofluorides, not the fluoride salts used in dental products (such as sodium fluoride and stannous fluoride). Silicofluorides are one of the by-products from the manufacture of phosphate fertilizers. The toxicity database on silicofluorides is sparse and questions have been raised about the assumption that they completely dissociate in water and, therefore, have toxicity similar to the fluoride salts tested in laboratory studies and used in consumer products (Coplan and Masters 2001).

It also has been maintained that, because of individual variations in exposure to fluoride, it is difficult to ensure that the right individual dose to protect against dental caries is provided through large-scale water fluoridation. In addition, a body of information has developed that indicates

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement