education. The investigators also reported that enamel fluorosis was present in 86% of the children in the high-exposure group and in 14% of the children in the low-exposure group and that skeletal fluorosis was found only in the high-exposure group at 9%.

Another Chinese study evaluated fluoride exposure due to inhalation of soot and smoke from domestic coal fires used for cooking, heating, and drying grain (Li et al. 1995). Many of the children exhibited moderate to severe enamel fluorosis. The average IQ of 900 children (ages 8-13) from an area with severe enamel fluorosis was 9-15 points lower than the average IQ of children from an area with low or no enamel fluorosis. Urinary fluoride concentrations were found to be inversely correlated with IQ, as measured by the China Rui Wen Scale for Rural Areas, and were monotonically related to the degree of enamel fluorosis. Studies based on fluoride exposure from the inhalation of smoke from coal fires are difficult to interpret because of exposure to many other contaminants in smoke.

The significance of these Chinese studies is uncertain. Most of the papers were brief reports and omitted important procedural details. For example, some studies used a modification of the Raven Progressive Matrix test but did not specify what the modifications were or describe how the test was administered. Most of the studies did not indicate whether the IQ tests were administered in a blinded manner. Some of the effects noted in the studies could have been due to stress induced by the testing conditions. Without detailed information about the testing conditions and the tests themselves, the committee was unable to assess the strength of the studies. Despite this, the consistency of the collective results warrants additional research on the effects of fluoride on intelligence in populations that share similar languages, backgrounds, socioeconomic levels, and other commonalities.

It should be noted that many factors outside of native intelligence influence performance on IQ tests. One factor that might be of relevance to fluoride is impairment of thyroid gland function (see Chapter 8). For example, hypothyroidism produces tiredness, depression, difficulties in concentration, memory impairments, and impaired hearing. In addition, there is some evidence that impaired thyroid function in pregnant women can lead to children with lower IQ scores (Klein et al. 2001).

Mental and Physiological Changes

There are numerous reports of mental and physiological changes after exposure to fluoride from various routes (air, food, and water) and for various time periods (Waldbott et al. 1978). A number of the reports are, in fact, experimental studies of one or more individuals who underwent withdrawal from their source of fluoride exposure and subsequent re-exposures under “blind” conditions. In most cases, the symptoms disappeared with the elimi-



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement