Box 1.3
International Polar Year (2007-2008)

There have been a number of major international science initiatives in polar regions since the first International Polar Year (IPY) in 1882-83 (see Figure 1.1) and all have had a major influence on the understanding of global processes. Many of these initiatives involved intense periods of multidisciplinary research, collected a broad range of measurements, and provided snapshots of the state of the polar regions.

The last such initiative—the International Geophysical Year in 1957-58—involved 80,000 scientists from 67 countries. It produced unprecedented exploration and discoveries and fundamentally changed how science was conducted in the polar regions. Fifty years on, technological developments such as Earth observation satellites, autonomous vehicles, and molecular biology techniques offer opportunities for a further major step upwards in observing and understanding polar systems. The next IPY, in 2007-2008, affords an opportunity to engage the upcoming generation of young Earth system scientists, educate the public on the global influence and current state of the polar regions, and inject momentum into (and supplement) ongoing observing activities.

SOURCE: http://www.ipy.org/about/what-is-ipy.htm.

Box 1.4
Global Earth Observation System of Systems

In response to the need for improved access to environmental information, over 60 countries have endorsed a 10-year plan to develop and implement the Global Earth Observation System of Systems (GEOSS). Nearly 40 international organizations also support the plans. GEOSS has identified nine societal benefit categories where an integrated and coordinated system of earth observing networks would provide help. These are disasters, health, energy, climate, water, weather, ecosystems, agriculture, and biodiversity.

Commenting in 2005 on the 10-year Strategic Plan for the U.S. component of the GEOSS, John Marburger, director of the White House Office of Science and Technology Policy and presidential science advisor, stated:

“GEOSS will allow scientists and policy makers in many different countries to design, implement and operate integrated Earth observing systems in a compatible, value-enhancing way. It will link existing satellites, buoys, weather stations and other observing instruments that are already demonstrating value around the globe and support the development of new observational capabilities where required.”

SOURCE: http://usgeo.gov/docs/EOCStrategic_Plan.pdf.

data that would be primarily of local interest—for example, the distributions of animals used as subsistence food resources in the Arctic by local populations, or changes in the distributions of shrubs and trees in local landscapes—but the AON must be developed as an organic, integrated component of both national and international emerging Earth observation efforts that typically have weak arctic representation.

As GEOSS gains traction, it may provide a unique opportunity for the AON to assert itself as the arctic contribution to GEOSS. However, to do so, the AON will need to ensure its connections to other global networks that will be key contributors to GEOSS such as the Global Ocean Observing System (GOOS), the Global Terrestrial Observing System (GTOS), and the Global Climate Observing System (GCOS).



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement