scientists generate and evaluate scientific evidence and explanations have long been the focus of study in philosophy, history, anthropology, and sociology. More recently, psychologists and learning scientists have begun to study the cognitive and social processes involved in building scientific knowledge. For our discussion, we draw primarily from the past 20 years of research in developmental and cognitive psychology that investigates how children’s scientific thinking develops across the K-8 years.

We begin by developing a broad sketch of how key aspects of scientific thinking develop across the K-8 years, contrasting children’s abilities with those of adults. This contrast allows us to illustrate both how children’s knowledge and skill can develop over time and situations in which adults’ and children’s scientific thinking are similar. Where age differences exist, we comment on what underlying mechanisms might be responsible for them. In this research literature, two broad themes emerge, which we take up in detail in subsequent sections of the chapter. The first is the role of prior knowledge in scientific thinking at all ages. The second is the importance of experience and instruction.

Scientific investigation, broadly defined, includes numerous procedural and conceptual activities, such as asking questions, hypothesizing, designing experiments, making predictions, using apparatus, observing, measuring, being concerned with accuracy, precision, and error, recording and interpreting data, consulting data records, evaluating evidence, verification, reacting to contradictions or anomalous data, presenting and assessing arguments, constructing explanations (to oneself and others), constructing various representations of the data (graphs, maps, three-dimensional models), coordinating theory and evidence, performing statistical calculations, making inferences, and formulating and revising theories or models (e.g., Carey et al., 1989; Chi et al., 1994; Chinn and Malhotra, 2001; Keys, 1994; McNay and Melville, 1993; Schauble et al., 1995; Slowiaczek et al., 1992; Zachos et al., 2000). As noted in Chapter 2, over the past 20 to 30 years, the image of “doing science” emerging from across multiple lines of research has shifted from depictions of lone scientists conducting experiments in isolated laboratories to the image of science as both an individual and a deeply social enterprise that involves problem solving and the building and testing of models and theories.

Across this same period, the psychological study of science has evolved from a focus on scientific reasoning as a highly developed form of logical thinking that cuts across scientific domains to the study of scientific thinking as the interplay of general reasoning strategies, knowledge of the natural phenomena being studied, and a sense of how scientific evidence and explanations are generated. Much early research on scientific thinking and inquiry tended to focus primarily either on conceptual development or on the development of reasoning strategies and processes, often using very



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement