different ways to study the nature of science (Klahr and Simon, 1999; Proctor and Capaldi, 2005; Giere, 1999). The committee recognizes that these different perspectives are not mutually exclusive and that, in considering how best to teach science, each can identify certain elements that need to be given their due attention. We summarize the key elements of a number of these viewpoints.1

Science as a Process of Logical Reasoning About Evidence

One view of science, favored by many psychologists who study scientific reasoning, emphasizes the role of domain-general forms of scientific reasoning about evidence, including formal logic, heuristics, and problem-solving strategies. Among psychologists, this view was pioneered by the work of Inhelder and Piaget (1958) on formal operations, by the studies of Bruner, Goodnow, and Austin (1956) on concept development, and by investigations by Wason (1960, 1968) of the type of evidence that people seek when testing their hypotheses. The image of scientist-as-reasoner continues to be influential in contemporary research (Case and Griffin, 1990). In this view, learning to think scientifically is a matter of acquiring problem-solving strategies for coordinating theory and evidence (Klahr, 2000; Kuhn, 1989), mastering counterfactual reasoning (Leslie, 1987), distinguishing patterns of evidence that do and do not support a definitive conclusion (Amsel and Brock, 1996; Beck and Robinson, 2001; Fay and Klahr, 1996; Vellom and Anderson, 1999), and understanding the logic of experimental design (Tschirgi, 1980; Chen and Klahr, 1999). These heuristics and skills are considered important targets for research and for education because they are assumed to be widely applicable and to reflect at least some degree of domain generality and transferability (Kuhn et al., 1995; Ruffman et al., 1993).

Science as a Process of Theory Change

This view places emphasis on the parallel between historical and philosophical aspects of science (Kuhn, 1962) and the domains of cognitive development (Carey, 1985; Koslowski, 1996) in which domain-specific knowledge evolves via the gradual elaboration of existing theories through the accretion of new facts and knowledge (normal science, according to Kuhn), punctuated, occasionally, by the replacement of one theoretical framework by another. The science-as-theory perspective places its emphasis less on the mastery of domain-general logic, heuristics, or strategies and more on

1

This discussion of the different views of science is based on Lehrer and Schauble (2006).



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement