INDEX

A

Acanthostega, 88, 102, 106

Adenosine diphosphate (ADP), 14

Adenosine triphosphate (ATP), 14

Aetosaurs, 151, 197

Age of Earth, 5, 32

Age of first animals, 52

Age of Universe, 32

Algae, 55, 9394

Allonautilus, 71, 74, 75

Allosaurus, 167, 178, 202

Alroy, John, 225

Altitude.

See also High altitudes compression, 47, 141, 154155

sickness, ix

Alvarez Impact Hypothesis, 138, 167

Ambulacra, 65

American Museum of Natural History, 52, 208

Ammonites, 71, 106, 163, 197, 199, 213, 215, 216218, 223

Ammonoids, 71, 73, 113, 114, 133, 144, 159

Amphibians

adaptive radiation, 105

diversity, 195, 196

evolution of, 100104

gigantism, 113

heart, 125

reproductive strategy, 120

reptile differentiation, 121

respiratory system, 100, 103, 104105, 195

Romer’s Gap, 103, 104108, 109

tadpole stage, 104

transition from gill to lungs, 100, 103, 104105

Amphioxus, 76

Amphipods, 115

Anapsids, 126, 127, 130, 151, 211

Angelyck, Ken, 153

Anhydrate, 36, 37

Animal-free zones, 1517

Annelids, 12, 15, 57, 59, 6061, 93, 95

Anomalocaris, 57, 79, 84, 161

Anoxic environments

atmosphere, 38

continental drift and, 231232

and mass extinctions, 102, 142, 204

in oceans and seas, 1517, 32, 53, 75, 102, 106, 142, 204, 231234

Arandaspis, 85

Archaeognatha, 98

Archaeopteris, 88

Archaeopteryx, 178, 185, 206



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 265
Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere INDEX A Acanthostega, 88, 102, 106 Adenosine diphosphate (ADP), 14 Adenosine triphosphate (ATP), 14 Aetosaurs, 151, 197 Age of Earth, 5, 32 Age of first animals, 52 Age of Universe, 32 Algae, 55, 93–94 Allonautilus, 71, 74, 75 Allosaurus, 167, 178, 202 Alroy, John, 225 Altitude. See also High altitudes compression, 47, 141, 154–155 sickness, ix Alvarez Impact Hypothesis, 138, 167 Ambulacra, 65 American Museum of Natural History, 52, 208 Ammonites, 71, 106, 163, 197, 199, 213, 215, 216–218, 223 Ammonoids, 71, 73, 113, 114, 133, 144, 159 Amphibians adaptive radiation, 105 diversity, 195, 196 evolution of, 100–104 gigantism, 113 heart, 125 reproductive strategy, 120 reptile differentiation, 121 respiratory system, 100, 103, 104–105, 195 Romer’s Gap, 103, 104–108, 109 tadpole stage, 104 transition from gill to lungs, 100, 103, 104–105 Amphioxus, 76 Amphipods, 115 Anapsids, 126, 127, 130, 151, 211 Angelyck, Ken, 153 Anhydrate, 36, 37 Animal-free zones, 15–17 Annelids, 12, 15, 57, 59, 60–61, 93, 95 Anomalocaris, 57, 79, 84, 161 Anoxic environments atmosphere, 38 continental drift and, 231–232 and mass extinctions, 102, 142, 204 in oceans and seas, 15–17, 32, 53, 75, 102, 106, 142, 204, 231–234 Arandaspis, 85 Archaeognatha, 98 Archaeopteris, 88 Archaeopteryx, 178, 185, 206

OCR for page 265
Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere Archeocyathids, 83 Archosaurs, 151, 152–153, 160, 162, 177, 188, 211, 212 Arizona State University, 115 Arthropleura, 110 Arthropods, 3. See also specific arthropods body plan, 10, 12, 51, 56–57, 59, 64, 111–112 Cambrian, 51, 52, 56–57, 58–63 diversity, 109 gigantism, 91, 111–112, 113, 115 land colonization, 93, 95–96, 98, 99, 107 mass extinctions, 78–79 Ordovician, 82 respiratory systems, 22, 60–61, 95, 96 segmentation, 57, 58–63, 91 Silurian, 91, 93, 95–96, 98, 99 Asteroid impact. See Meteor/asteroid impacts Atmosphere. See also Carbon dioxide; Nitrogen; Oxygen; Oxygen-poor conditions; Oxygen-rich conditions COPSE model, 39 determinants of changes, 35–37, 38–39 forcings, 38–39 functions of, 31 GEOCARB model, 38 GEOCARBSULF model, 38–39, 41 measuring changes, 37–39 origins, 32–33 ozone layer, 35, 143 present-day composition, 1, 31, 32, 34 pressure, 184 B Bacteria, 83 in anoxic environments, 16, 214–215 cyanobacteria, 34–35, 53–54 methanogens, 215 plant decomposition, 117 respiration, 12, 14 sulfur-metabolizing, 134, 136, 141–142, 164 Bakker, Robert, 152, 173–174, 175–176, 180, 200, 205 Banded iron formations, 34 Bardet, Nathalie, 190 Basalt floods and, 140–141, 233 Becker, Luann, 139, 140 Beerling, David, 119 Bennett, Albert, 188 Benton, Mike, 154 Bergman, Noah, 39 Berner, Robert, 36, 38, 39, 44, 99, 140, 141, 235 Birds bipedalism, 166 bone pneumaticity, 181–183, 185, 206 Cretaceous, 152, 173, 175, 178 endothermy, 145, 147, 150, 151, 174, 176, 178, 207 evolution, 1, 48, 121, 174, 178, 185, 199, 200, 202, 206–207 first, 185 flight, 176, 178, 200, 206–207 heart, 150 at high altitudes, 122 Jurassic, 174, 199, 202 reproduction, 122, 208, 212 respiratory system, ix–x, 27–28, 147, 148, 171, 172–174, 176–177, 179, 181, 184, 207 Bivalves arthropods, 56–57 brachiopods, 56, 81, 82–83 low-oxygen-tolerant, 214–216 mollusks, 22, 23, 27, 65, 68, 69, 70, 159, 163, 199, 214–216 Black Sea, 16, 35, 142 Blood pigments, 13, 14–15, 263. See also Circulatory system Body plans of animals anterior and posterior design, 12 appendages/protrusions, 12, 20, 23, 59 aquatic, 214–221

OCR for page 265
Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere bipedal, 162–163, 165–171, 200 classification systems, 9–10 elongated, 20 exoskeletons, 59, 60, 112 fossil record, 2 functional origin, 11–12 limitations on, 111–112 mass extinctions and, 159 morphological changes during speciation events, 46, 78–79, 102 nerve tissue, 20, 227–228 protective, 111, 162 and respiratory structures and systems, 2, 6–7, 10–11, 19, 20, 26, 27–28, 42–48, 111, 124–125, 165 segmentation, 12, 57, 58–63, 65, 69, 91 size limits, 111 skeletons, 12, 220 squat and compact, 20 Theory of Punctuated Equilibrium, 46 Brachiopods bivalve, 56, 81, 82–83 Cambrian, 58, 64 extinction, 95, 133, 137, 159, 163 inarticulate, 56 lophophore, 65–66, 67, 83 Ordovician, 87 pentamerid, 91–92 respiratory structures, 64, 70, 87 Silurian, 89 spiny, 114 Briggs, Derek, 58 Bryozoans, 65, 81, 82, 83, 95, 133 Bucky Balls, 139–140 Burgess Shale fauna, 2, 55, 56, 58, 59, 64, 66, 72, 75, 79, 161 C Calcium carbonate, 219–221 Cambrian Explosion, xi, 11 arthropod diversity and disparity, 51, 52, 56–57, 58–63 carbon dioxide levels, 44, 53 chordate evolution, 57–58, 75–78 climate and, 43, 53 fossil record, 2, 3, 51, 56 importance of, 52–53, 161 landscape and environment, 42, 43, 44, 53–57 marine life, 55–58, 65, 67–75, 136 mass extinctions, 78–79, 81, 84, 86, 87, 89, 130, 161 molluscan evolution, 65, 67–75 oxygen levels, 41, 53, 54, 78, 129–130, 161 plant life, 53–54 respiratory systems of animals, 60–67 segmented body plans, 57, 58–63 speciation rate, 103 time interval, 52 Cambridge University, 11 Canadapsis, 56 Carbon, organic, 16, 36 Carbon cycle, 36, 37, 38, 79, 116, 164, 220–221, 229–230 Carbon dioxide atmospheric changes over time, 10, 32, 33–34, 35, 38, 41, 44, 53, 138, 184, 186, 204, 223 basalt flood and, 140–141, 233 and calcium carbonate formation, 218–221 catastrophe, 140 and diversification rates, 44–45 forcings, 38–39 GEOCARB models, 38, 41 greenhouse effect, 41, 45, 140, 143, 189 and mass extinctions, 140 oxygen from, 34–35 and plant evolution, 44, 94, 137 respiratory waste product, 14, 15, 23, 24 solubility in water vs. air, 18, 19 volcanic, 33, 35 Carboniferous-Early Permian Period, 40–41 amniotic egg evolution, 113, 120–124

OCR for page 265
Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere atmospheric pressure, 115–116 climate, 112, 117, 120, 129 continental drift, 116–117 evolution, 119–124 forest fires, 112, 117–118 insects, 113, 114–117 landscape, 112–114 marine life, 113–114 oxygen levels, 109, 110, 114–119, 130–131 plants, 112–113, 117, 118–119 reptiles, 120–131, 171 size of animals, 111–112, 113, 130–131 Carrier, David, 124 Carrier’s Constraint, 124, 166, 168 Carroll, Robert, 101 Cenozoic Era, subdivisions, 41 Cephalopods body plan, 67, 71, 80, 85, 132 buoyancy organ, 70–71, 72–74, 85 carnivores, 85 chambered, xi, 70–75, 84–85, 199 competition, 89, 113 diversification, 92, 144, 159, 199 evolution of, 2, 65, 70–75 extinctions, 136, 137, 163 gigantism, 87 locomotion, 72, 74, 75, 85 low-oxygen-tolerant, 216–218 metabolism, 217 respiratory system, 15, 69, 71, 74, 75, 85, 87, 217–218 shelled, 3, 71, 72–74, 113 Ceratites, 158, 163 Ceratopsians, 202, 203 Ceratosaurs, 202 Chapelle, Gautier, 115 Charophyceae, 93–94 Chasmatosaurus, 165 Chelicerates, 15 Chengjiang fossils, 55–57, 58, 64, 75, 76, 77, 207 Chicxulub asteroid strike, 71, 118 Chinsamy, Anusuya, 185 Chitons, 69, 70 Chordates evolution of, 57–58, 75–78, 87 land colonization, 95, 120 Chriacus, 222 Chuandianella, 57 Ciliates and cilia, 15, 23 Circulatory systems, 25, 26, 150, 152, 263 Cistecephalus, 131 Clack, Jenny, 103, 104 Claessens, Leon, 181, 182–183 Clams beds, 215–216 low-oxygen-tolerant, 214–216, 223 siphonate, 214 Classification systems, 9–10 Climate. See also Temperatures, ambient by geological period, 30, 41 glaciations, 112, 120, 129, 137 global warming, 134, 137, 143, 146–147, 156, 184, 229 greenhouse effect, 33–34, 41, 43, 45, 53, 140, 142, 143, 186, 229, 230 and mass extinctions, 106, 120, 134, 137, 140, 142, 156 sea level rise and, 232 and speciation events, 43, 53 Cnidaria, 10, 63–64, 95, 133 Coal Age, 117–118 Coccolithophorids, 213, 220, 221 Coelacanth, 100 Coelophysis, 177, 202 Coleoids, 199 Collier, Fred, 58 Comatulids, 214 Comet impacts, 33. See also Meteor/asteroid impacts Competition, 10, 42, 43, 48 Complexity of life, and energy requirements, 13 Continental drift, 116–117, 129, 134, 138, 230–23 Cope, Edward, 92 COPSE model, 39 Corals, 81, 86, 87, 114, 144, 160, 163

OCR for page 265
Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere Cornette, James, 44, 45 Cotylosaurs, 127 Crabs, 22, 63, 218–219 Cretaceous Period birds, 152, 173, 175, 178 carbon dioxide levels, 223 dinosaurs, 3, 48, 175, 179–180, 183, 193–194, 200, 202, 203, 205, 208–209, 211, 213 diversification, 3, 48, 194 endothermic adaptation, 152 mammals, 199, 222, 224–228 marine fauna, 3, 213–221 mass extinctions, 118, 203, 218, 222, 223, 225 oxygen levels, 183, 222, 223, 225–227 plant life, 194, 205, 223 respiratory systems, 173 time interval, 41 Crinoids, 80, 113–114, 133, 136, 214 Crocodiles, 144, 151, 152, 168, 169, 172, 177, 179, 180, 184–185, 195, 196, 208 Crossopterygians, 100 Crurotarsans, 151 Crustaceans, 2, 15 Ctenophores, 56 Cyanobacteria, 34–35, 53–54 Cymbospondylus, 158, 190 Cynodonts, 130, 135, 146, 147, 160, 161, 169, 188, 223 D Darwin, Charles, 2, 5, 6, 51 Dawkins, Richard, 3 de Riqules, A., 152 Demosponges, 56, 82 Desiccation, 68, 93, 94–95, 211 Devonian Period, 40–41. See also Silurian-Devonian interval mass extinctions, 48, 92, 102, 106 oxygen levels, 48 Diagoniella, 50 Diapsids, 126–127, 135, 151, 165, 168, 177, 211 Dicynodonts, 130, 131, 135, 146, 160, 161, 165 Diictodon, 131, 132, 153 Dimetrodon (Sail Back), 110, 113, 127, 128, 146 Dinocephalians, 129, 130, 131 Dinosaurs air sac controversy, 173–183, 184, 185–186, 187, 206 armored, 202–203 body plans, 48, 162–163, 166, 167–168, 170–171, 191–192, 200, 201–204 bone pneumaticity, 175, 177, 179, 180, 181–182, 183, 185, 195, 197, 200, 205, 206 Chinese fossils, 179–180 Cretaceous, 3, 48, 175, 179–180, 183, 193–194, 200, 202, 203, 205, 208–209, 211, 213 diversity and disparity, 192–193, 195–197, 204–205 ectothermy, 178–179, 186–187, 188, 189, 206 endothermy, 125, 126, 127, 151–153, 167, 179, 184, 186, 206 evolution, 144, 151, 165–168, 169–170, 177–179, 184, 188, 200, 201–204 extinctions, 203, 207, 223 first, 167, 170, 177, 184, 200 flying, 169–170 gastralia, 183 herbivores, 204–205 history of, 201–204 Jurassic, 3, 122, 175, 177–178, 183, 185, 187, 194, 196, 199, 200, 202–203, 204, 209, 213 locomotion, 168–169 low-oxygen adaptations, 151, 166–167, 180, 188–191 Mesozoic, 127, 184, 194 metabolism, 151, 184–188, 189, 206 number of, 193–194 reproduction, 207–213

OCR for page 265
Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere respiratory systems, x, 8, 166–167, 168–169, 170, 173–183, 184–187, 195, 197, 200, 204–205, 206 size of, 194, 201, 202–203, 206 tooth adaptations, 205–206 Triassic, 3, 8, 47, 161, 162–163, 165–171, 177–180, 184–188, 191–194, 196, 201–202, 204, 209, 224 Diplodocus, 198 Diversity, habitat area and, 155, 193 DNA studies, 51, 75–76, 100–101, 121, 225 Dodson, Peter, 184 Dragonflies, 113, 114–115 Dromaeosaurids, 207 Dudley, Robert, 115 E Echidna, 225 Echinoderms, 15, 64–65, 66, 81, 87, 95, 111, 113–114, 137 Echinoids, 22 Ectothermy (cold-bloodedness) anapsid reptiles, 127 defined, 125, 126 dinosaurs, 178–179, 186–187, 188, 189, 206 disadvantages in cold environments, 145 and diving adaptation, 152 and heart size, 150, 152 oxygen conditions and, 148–149 synapsid reptiles, 127 Ediacarans, 50, 161 Eldredge, Niles, 46 Endemism, 47, 154–155 Endosymbiosis Theory, 34–35 Endothermy (warm-bloodedness), 26 aerobic capacity model, 149 air sacs and, 174, 176, 178, 179, 184, 207 birds, 145, 147, 150, 151, 174, 176, 178, 207 defined, 125–126 dinosaurs, 125, 126, 127, 151–153, 167, 179, 184, 186, 206 evolution of, 144–150 and four-chambered heart, 150–151, 152 metabolism and, 144–150, 151, 188 and nasal bones, 26, 146, 147, 187 oxygen levels and, 146–150 respiratory implications, 146, 147, 150 Energy expenditure and requirements. See also Metabolism air breathers vs. water breathers, 18–19 oxygen and, 12–15 size of animal and, 126, 162 temperature and, 188–191 Eoaluolavis, 207 Eocene, 43 Eoraptor lunesis, 158 Erwin, Doug, 58 Eudimorphodon, 169 Eukaryotes, 35 Euparkeria, 169 Eurypterids, 80, 91, 92 Eutrephoceras, 222 Eutrification, 17 Evolution adaptive radiation, 105, 192 air sac system, 175, 177–179 amniotic egg and, 113, 120–124 amphibians, 100–104 biotic pressures, 42, 43 carbon dioxide levels and, 44–45 chordate, 75–78 convergent, 11, 60, 151, 178 Cope’s Rule, 92 Darwinian, 2, 5, 51–52 diversification of animal phyla, 51, 52, 86, 192 endothermy, 144–150 environmental pressures, 42, 43 locomotory adaptations, 61 Mesozoic Marine Revolution hypothesis, 42–43, 214 monophyletic stock, 121, 216

OCR for page 265
Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere natural selection, 42 oxygen levels as driver for, 2, 6–7, 10, 28–29, 42–48, 77–78, 86–87, 104–105, 119–120, 192–193, 235 paedomorphism, 76 rate of change, 44, 45, 86 respiratory adaptations, 25–26, 60, 61, 67–75, 77 Romer’s Gap, 103, 104–108, 109 vertebrates, 46–47, 75–78, 100–104 Extinctions. See Mass extinctions F Falkowsky, Paul, 226 Favkosky, David, 194 Fermentation, 12, 14 Fish air-breathing, 108 amphibian diversification, 100–104 armored, fresh water, 85, 86, 90–91 bony, 100, 113 cartilaginous sharks, 113 extinctions, 133, 137, 163 gills, 24, 77, 85 jawed, 90 locomotion and respiration, 124 skeletonized, 81 thermoregulation, 188 Flatworms, 15, 20, 67 Fluorine, 13 Foraminifera, 213, 220 Forest fires, 112, 117–118 Fortey, Richard, 3 Fossils. See also Burgess Shale fauna; Chengjiang fossils age of first animals, 52 dating of, 5, 39, 52, 104 eggs, 121–122, 123–124, 208, 212 and geological timescale, 39, 40, 51 Greenland tetrapods, 102 Karoo deposits, 129, 134, 153, 165 land animal, 95, 96–97 reptile, 121 Rhynie Chert assemblage, 97, 98 South African, 148 Valentia footprints, 101, 108 Fresh water, oxygen content, 18 G Garstang, W., 76 Gastropods, 15, 22, 65, 68, 69, 70, 99, 213–214 Geist, Nicholas, 182, 211, 212 GEOCARB models, 38, 41, 141 GEOCARBSULF model, 38–39, 180, 193–194, 195, 204 Geological timescale, 5, 30, 39–41 Gigantism, 91, 111–112, 113, 114–115, 130, 201, 202–203, 206, 215 Gills circulatory systems, 69, 77 countercurrent systems, 24 enclosed, 219 external systems, 23 as feeding organs, 27, 61, 63–64, 66, 67, 70, 76, 77–78, 83, 215 gnathobase water current system, 61 internal systems, 23, 64, 219 oxygen extraction efficiency, 62–63, 67–68, 75, 235 passive system, 21–22, 61, 62, 67, 70 pouches, 85–85, 105 protective structures and, 67–68, 85 pump systems, 21, 23–24, 61, 64, 66, 67, 68, 71, 75, 76, 77–78, 85, 92, 217 segmentation and, 60–63, 65, 69, 92 shells as part of, 69–71 surface area, 59, 61, 62, 63–64, 69, 77, 92, 97 thickness and size, 23–24 transition to lungs, 103 whole-body, 63 Glaciations, 112, 120, 129, 137 Glass sponges, 56, 82 Global warming, 134, 137, 143, 146–147, 156 Glossopteris, 156

OCR for page 265
Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere Glucose, 14 God, 6 Goldstein, Robert, 44 Gordon, Malcolm, 103, 105, 108 Gorgonopsians, 130, 131, 132, 135 Gould, Stephen Jay, 4, 11, 46, 75 Graptolites, 86 Greenhouse effect, 33–34, 41, 43, 45, 53, 140, 142, 143, 186 Greenhouse gases, 32. See also Carbon dioxide; other specific gases Gulf of Mexico, 16–17, 75 Gypsum, 36, 37 H Hadrocodium, 198 Hadrosaurs, 203, 205 Halobia, 215, 216 Harvard University, 140 Heart size and configuration, 26, 77, 263 four-chambered, 150–151, 152, 187 thermoregulation and, 150–151, 152 three-chambered, 125 Heavy Bombardment period, 33 Hemerythrin, 15 Hemicyclopsis, 86 Hemoglobin, 14–15 Herrerasaurus, 168, 170 Hesperonis, 222 High altitudes. See also Oxygen-poor conditions birds at, 122, 148, 174 mammalian reproductive limits, 227 and oxygen, 18 respiratory system efficiency, 28–29, 148 Hillenius, Willem, 147, 148, 185 Hirsch, Karl, 211 History of life basic questions, 3–4 Cenozoic mammals, 223–225 chronology, 3, 4, 5, 52–53 classification systems, 9–10 dinosaurs, 201–204 driving forces, 4 evolution, 2, 5 extraterrestrial replication of Earth, 11 fossil and genetic record, 4–5 geological timescale, 5, 30, 39–41 pre-Cambrian, 42 Romer’s Gap, 103, 104–108, 109 scientific study, 4–5, 6 stratigraphic study, 5 terrestrialization, 92–99 Hooke, Robert, 72 Horner, Jack, 152, 185, 188, 208 Hox gene complex, 62 Huey, Ray, 141, 146, 154, 155, 190 Hydrogen-fluoride bonds, 13 Hydrogen-hydroxyl bonds, 13 Hydrogen sulfide, 37, 134, 136, 141–142, 155, 204 Hydroxyl radicals, 119 Hylonomus, 121 Hynerpeton, 102 Hyoliths, 56 Hypotheses ammonite body plan, 218 chordate pump gill, 76 crab body plan, 219 dinosaur bipedalism, 168 dinosaur diversity, disparity, and size, 192–193, 204–205 dinosaur reproductive strategy, 213 dinosaur respiratory system, 197 endemism in low-oxygen environments, 154–155 endothermic adaptation to low oxygen, 147, 14 land colonization by animals, 98, 99, 108 molluscan shell pump, 68, 71 oxygen levels as evolutionary driver, 43, 47, 98, 192–193 repeated-segment body plan, 61 reproductive strategy in oxygen-rich environments, 122 test of, 43–48

OCR for page 265
Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere Hypothetical Ancestral Mollusk (HAM), 68 Hypoxia. See Oxygen-poor conditions Hypsilophondontids, 202 Hypsilophontids, 203 I Ichthyosaurs, 122, 164, 190, 191, 199, 200, 209, 213 Ichythostega, 102, 103, 105, 108 Iguanodons, 202 Inoceramus, 216 Insects Carboniferous, 113, 114–117 floral revolution and, 194 gigantism, 112, 113, 114–115, 130 land colonization, 97, 98, 101 metabolic rates, 115 oxygen levels and, 90, 95, 97 Permian extinction, 135 respiratory system, 15, 96, 115, 130 segmentation, 59 Silurian, 90, 91, 95, 97, 98 thermoregulation, 188 winged, 97, 98, 114–115 Insolation changes, 39, 43, 89 Invertebrates gill systems, 22, 23, 27 heart, 25 low-oxygen adaptations, 160 sessile, 23 Iron, 16, 36 J Johns Hopkins University, 120, 227 Jones, Terry, 182 Jurassic Period birds, 174, 199, 202 dinosaurs, 3, 122, 175, 177–178, 183, 185, 187, 194, 196, 199, 200, 202–203, 204, 209, 213 flyers, 200 fossil record, 129 gigantism, 202–203 mammals, 196, 199, 200 marine fauna, 3, 197, 199, 200, 213–221 mass extinctions, 195–197, 199, 204 oxygen levels, 157, 183, 185, 194, 198, 199, 200, 204, 207–213, 214, 227 rebound, 197 reptiles, 199 time interval, 41 K Kannemeyeria, 131 Kelvin, Lord, 5 Knoll, Andy, 140 Kosmoceras, 198 Kump, Lee, 141 L Labandeira, Conrad, 99, 106 Lagosuchus, 170 Lampreys, 86 Lancelet, 76 Land colonization amphibian evolution, 100–104 annelids, 93, 95 arthropods, 93, 95–96, 98, 99, 107 fossil record, 95, 96–97, 102 insects, 97, 98, 101 mollusks, 93, 95, 99 oxygen levels and, 93–99, 101 plant evolution, 38, 42, 89, 90, 93–94 reproductive strategy and, 120–124 respiration-locomotion dilemma, 124–125 time interval, 89, 90 transition from gills to lungs, 89, 90, 96–97, 105 two-phase, 106–108 vertebrates, 93, 95, 99, 100–104, 107 Land surface, 10 Lane, Nick, 114

OCR for page 265
Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere Laurin, Michel, 99, 101, 106, 130, 131 Lead, 16 Lenton, Timothy, 39 Lepidodendron, 112 Lieberman, Bruce, 44 Limpets, 136 Lingula, 56 Linnaeus, C., 9 Liopleurodon, 198 Littorina, 55 Lizards, 125, 166, 172, 188, 208, 210 Lobopod, 57 Locomotion Carrier’s Constraint, 124, 166, 168 dinosaur, 168–169 energy requirements, 13 evolution of, 61 hyponome, 74 on land, 100, 105, 124–125 marine bottom dwellers, 11–12 mollusks, 67, 72, 73, 74, 75, 85 posture and, 165–166 and respiratory system, 20, 22, 24, 61, 65, 71, 74, 75, 85, 124–125, 135, 165–166, 168–169, 172 segmentation and, 12, 61, 62 skeletons and, 12 Long, John, 103, 105, 108 Lophophore, 65–66, 67, 83 Lung fish, 100, 104 Lung systems air sacs, 172–183, 184, 185–186, 187, 195, 196, 197, 200, 205, 206 alveolar, 171 amniote, 171–174 book lungs, 96 chest morphology, 26, 105, 176–177, 179 circulatory systems, 25, 26, 150, 152, 173, 263 diaphragm (pump), 24, 166, 171, 177, 179, 195 efficiency, 96, 171 and endothermy, 26 gas exchange principle, 24, 25 with gular pumping, 124 hepatic piston pump, 179, 180, 184 land colonization by animals and, 89, 90, 96–97, 105 and locomotion, 124–125 nasal bones, 26, 146, 147, 187 oxygen-poor environments and, 26 passive diffusion, 96 sac-like, 171, 177 septate, 171–172, 177, 179, 187, 196 size, 26 surface area, 96 vertebrates, 27 Lycopsids, 156 Lystrosaurus, 26–27, 131, 135 M MacArthur, Robert, 155 Mammals adaptive radiations, 199, 226 body plan, 168–169 Cenozoic, 224–225 Cretaceous, 199, 222, 224–228 endothermy, 145, 146, 147 evolution, 121, 130, 224–225 extinctions, 1 fossil record, 2 high-altitude, 227 human evolution, 227–228 Jurassic, 196, 199, 200, 227 metabolism, 223 oxygen levels and, 224, 225–227 reproductive strategies, 224–225, 226–227 respiratory system, 8, 147, 166, 171, 172 Tertiary diversification, 3 Triassic, 1, 3, 8, 130, 165, 196, 224 size of, 221, 224, 225–227 Maotionshania, 56 Marginocephalians, 202 Margulis, Lynn, 35 Marine life, xi air breathers, 152, 164 Cambrian, 55–58, 65, 67–75, 136 carbon dioxide and, 44

OCR for page 265
Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere Carboniferous, 113–114 Cretaceous, 3, 213–221 at deep-sea vents, 215 and diving adaptation, 152 energy metabolism, 18–19, 189–190 eutrification and, 17 Jurassic, 3, 197, 199, 200, 213–221 locomotion, 11–12 low-oxygen body plans, 214–221 lower Paleozoic diversification, 3, 44 Ordovician, 82, 86–87 oxygen levels and, 190–191 re-evolution of terrestrial animals, 188–191 reptiles, 160, 164, 188–191, 199 Silurian, 91–92 thermoregulation, 152 Triassic, 159–160, 163–164, 188–191, 214, 215 Marrella, 50, 59 Mass extinctions. See also Permian extinctions asteroid impacts and, 3, 71, 106, 118, 157, 204, 218 “Big Five,” 48, 134, 216 carbon dioxide and, 140, 204 and carbon isotope values, 140, 164 climate and, 106, 120, 134, 137, 140, 142, 156 Devonian, 48, 92, 102, 106 and evolutionary changes, 102, 143, 159–160, 191–193 hydrogen sulfide poisoning and, 204 K/T event, 118, 157, 167, 203 low-oxygen conditions and, 48–49, 79, 102, 142, 204 ozone layer destruction and, 143 plants, 137, 140 Triassic-Jurassic, 195–197, 199, 203, 204, 216 McElwaine, Jenny, 204 Mediterranean Sea, 232 Meganeura, 110, 114 Mesozoic Era asteroid-induced mass extinctions, 3, 144 dinosaurs, 127, 184, 194 marine environment, 17, 189, 215 oxygen levels, 41, 176, 180 subdivisions, 41 Mesozoic Marine Revolution Hypothesis, 42–43, 214 Metabolism. See also Energy expenditure and requirements basal level, 145, 188–189 defined, 144 dinosaur, 151, 184–188, 189, 206 and endothermy, 144–150, 151, 188 insects, 115 temperature and, 188–191 Meteor/asteroid impacts Alvarez Impact Hypothesis, 138, 167 Chicxulub asteroid strike, 71, 118, 218, 223 Manicouagan event, 204 and mass extinctions, 3, 134, 139–140, 143, 157, 167, 204 Methane, 140, 143, 164, 215 Micromitra, 50, 66 Millipedes, 97, 98, 113, 115 Mississippi River valley region, 17 Mississippian Period, 40–41, 97, 105, 106, 109, 114, 118, 121, 130 Mites, 97 Mixosaurus, 164 Molecular clock studies, 51, 100–101, 121, 225 Mollusks, 3, 64. See also individual families and species bivalve, 10, 22, 23, 27, 65, 67–75, 84–85, 159, 163, 199 body plan, 10, 67–75, 84–85 buoyancy organs, 70–71, 72–74, 84–85 evolution, 65, 67–75 extinctions, 133, 216 giant, 216 HAM model, 68 land colonization, 93, 95, 99 locomotion, 67, 72, 73, 74, 75, 85 in oxygen-poor environments, 75, 81, 199

OCR for page 265
Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere respiratory systems, 15, 22, 67, 68–75, 85, 99 segmentation, 65, 69 shell, 67–68, 69–74, 81, 84–85 size of, 87 Monitor lizards, 128 Monoplacophorans, 59, 65, 68, 69, 70, 71, 73 Monotis, 215, 216 Mosasaurs, 190, 191, 213, 223 Moschops, 129 Morris, Simon Conway, 11, 55 Mountain uplift, 37, 38, 232, 234 N Nautiloids, 74, 80, 84–85, 87, 92, 113, 132, 136, 144, 159, 199, 217, 218 Nautilus, xi, 69, 70–71, 72–75, 217 Nematodes, 15, 95 Nemerteans, 63 Neogastropods, 213 Neogene Period, 41 Neornischians, 202 Nesomachils, 88 Newman, S. A., 62 Nitrogen atmospheric, 32, 116 fixation, 35 volcanic, 33 Nodosaurs, 203 Nutrient-rich runoff, 16–17 O O’Connor, Patrick, 181, 182–183 Oceans and seas, 10. See also Marine life; individual bodies of water anoxic conditions, 15–17, 32, 53, 75, 102, 106, 142, 204, 214–215, 231–234 atmosphere and, 32 Cambrian, 54–55 Carboniferous, 115 chemistry, 33, 43 low-oxygen events, 78, 214–221 Mesozoic, 17 origin, 33 oxygen content, 18, 35, 87, 115 salinity, 33, 43 thermohaline circulation, 17 tides, 55 Octopus, 70, 218 Omolska, Halszka, 184 Onycophorans, 57 Ordovician Period animal diversification rates, 86 atmospheric gases, 79, 86–87 climate, 43 landscape and fauna, 81–85, 94 mass extinctions, 48 oxygen levels, 41, 48, 79, 80 time interval, 89 Oregon State University, 173 Ornithischians, 48, 171, 176, 183, 196, 200, 201, 202–203, 204–205 Ornithodira, 169–170 Ornithopods, 202 Osteolepis, 101 Ostracoderms, 80, 85, 86, 113 Oxidation-reduction reactions, 14, 34, 36 Oxygen atmospheric composition over time, 31–32, 33, 35–38, 39, 41, 53, 54, 78, 129–130, 161, 180, 229–235 Berner curves, 39, 53, 98, 101, 110, 130, 132, 157, 158, 198, 222, 226 carbon cycle and, 36, 37, 79, 220–221, 229–230 content of air vs. water, 18–19 continental drift and, 232–233 energy production, 12–15 enzyme biosynthesis, 13 and evolution, 2, 6–7, 10, 28–29, 42–48, 77–78, 86–87, 104–105, 119–120, 192–193 extraction efficiency, 27–28, 62–63, 67–68, 75, 77 isotope mass balance model, 38 locomotion and, 20

OCR for page 265
Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere measuring past levels, 37–39, 41, 180 and respiration, 18–20 sensory processing and, 20 sources, 13, 34–35 sulfur cycle and, 36–37 temperature and, 39 and thermoregulation, 148–149 Oxygen-free. See Anoxic environments Oxygen-poor conditions, 10. See also Cambrian Explosion; Jurassic Period; Permian extinctions; Triassic Explosion and altitudinal compression, 47, 141 and bipedalism, 167–169 and chest and lung morphology, 26–27 dinosaur adaptations, x–xi, 2, 151, 166–167, 180, 188–191 and diversification rates, 45, 46, 47, 86–87, 102, 109, 119 and endothermy, 146–150 greatest crash, 137–138 mammals, 2 and marine life, 17, 190–191, 214–221 and mass extinctions, 48–49, 79 reproductive strategy, 122–123 respiratory efficiency in, 26, 75, 77, 146–150, 153–154, 160–161 and speciation rates, 45, 46, 78–79, 102–103, 119 temperature and, 48 and tetrapod fossils, 101 Oxygen-rich conditions. See also Carboniferous-Early Permian Period; Permian extinctions; Silurian-Devonian interval and adaptive radiation, 97, 103, 105–106, 129 cause of, 116–117 and diversification rates, 119, 127–128 and extinctions, 216 and gigantism, 91–92, 111–112, 216 and habitat, 193 highest in Earth’s history, 112, 114 and hydroxyl radicals, 119 and land colonization, 93–99, 101 mammals, 2 and marine invertebrates, 120 plant life, 118–119 reproductive strategies, 122–123 and speciation rates, 45–46, 119–120 Ozone layer, 35, 143 P Pachycephalans, 202 Padian, Kevin, 185, 207 Paleomap Project, 231 Paleothyris, 121 Paleozoic Era. See also individual periods land colonization, 3 marine diversification, 3, 44, 144 oxygen levels, 26, 41, 131 subdivisions, 40–41 Pangea, 116–117, 129, 133, 138, 154, 230–231, 233, 234 Pareiosaurs, 127 Paul, Gregory S., 173–174, 176, 177, 178, 180, 188 Peck, Lloyd, 115 Pelycosaurs, 127, 128, 129 Pennatulaceans, 64 Pennsylvania State University, 141 Pennsylvanian Period, 40–41, 97, 99, 106, 109, 114, 118, 120, 121, 126, 127, 128–129 Perdepes, 104 Permian extinctions carbon dioxide levels and, 48, 134, 137, 138, 140, 143, 144 cause of, 133, 138–144 climate and, 43, 134, 135–136, 137, 140–141, 142, 143, 144, 146–147, 156 combination scenario, 142–143 damage estimates, 133 dinosaurs, 151–153, 211 and endothermy, 144–153

OCR for page 265
Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere evolutionary effects, 143–150 fungal and algal fossils, 156 habitable land area, 141, 154–155 hydrogen sulfide hypothesis, 134, 136, 141–142, 144, 155 importance of, 143–144 insects, 135 marine life, 3, 92, 133, 136–137, 143–144 meteor impact hypothesis, 134, 139–140 methane hypotheses, 140, 143 oxygen levels, 26, 41, 48, 98, 114, 132, 134, 135–136, 137–138, 140, 141, 144, 146, 153–154 ozone layer destruction hypothesis, 143 Permian-Triassic boundary event, 138–142, 144, 156 plant life and, 135, 137, 138, 155–156 recovery interval, 133, 157, 164–165 and reproductive strategy, 144 results of, 144, 153, 156–157 Siberian trap hypothesis, 140–141, 233 terrestrial life, 135, 141, 144 therapsid respiratory adaptations, 26–27, 153–154 time interval, 98 volcanic eruptions, 134 pH, 15, 42 Phanerozoic, subdivisions of, 40–41 Phillips, John, 144 Phosphorus, 14 Photosynthesis, 34–35, 36, 53, 93, 94, 117 C-4 pathway, 137 Phyla. See also Body plans of animals origins of, 10 Phytoplankton, 143 Phytosaurs, 151, 163, 195, 197 Pikaia, 50, 75 Pisanosaurus, 201 Placoderms, 90–91, 113 Placodonts, 164, 190 Plankton, 17, 83, 86, 117, 213 calcareous, 219–221 Plants angiosperms, 194, 205 C-4 photosynthesis, 137 Cambrian, 53–54 carbon dioxide levels and, 44, 94, 137 Carboniferous, 112–113, 117, 118–119 chloroplasts, 35 Cretaceous, 194, 205, 223 cuticle, 93–94 decomposition, 117, 233 fire resistance traits, 118 floral revolution, 194, 205 fossil record, 97 and insect diversification, 194 land colonization and evolution, 38, 42, 89, 90, 93–94 in oxygen-rich environments, 118–119 Permian extinctions, 137, 138, 140, 155–156 photorespiration, 119 reproduction, 94 root systems, 94, 119 stems and trunks, 94 stomata, 94 temperature sensitivity, 155 Plate tectonics, 37, 53, 220, 230–231, 233–234 Plateosaurus, 202 Platypus, 224–225 Pleistocene, climate, 43 Plesiosaurs, 190, 191, 199, 200, 213 Pojeta, John, 68 Polychaetes, 15 Polyplacophores, 69, 70 Poreda, Robert, 139 Powell, Matthew, 120 Predation and predators, 10, 22, 42, 43, 92, 111, 123, 128, 135, 147, 159, 165, 169, 170 Priapulans, 15 Priapulids, 56

OCR for page 265
Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere Prosauropods, 162, 202 Proterosuchus, 135, 153, 165, 177 Pterodactyls, 200, 207 Pterosaurs, 169, 200 Pyrite, 34, 36–37, 38, 116, 230 Q Quaternary Period, 41 R Radiometric age dating, 5, 39 Raff, Rudy, 10, 11 Rauisuchians, 152 Raup, David, 48 Reef ecosystems, 3, 81, 83–84, 89, 114, 137, 160, 163, 199 Rees, Peter McAllister, 156 Reproductive strategies, 120 amniotic eggs, 120–124, 208–212, 213, 224 calcareous eggs, 208, 209–210, 211, 212 dinosaurs, 207–213 high altitudes and, 122 and land colonization, 120–124 live births, 122, 123, 144, 208, 209, 211, 212, 213, 224–225, 226–227 marsupial, 224–225 oxygen levels and, 207–213, 235 parchment egg, 210, 211, 212, 213 placental, 224, 226–227 temperature and, 210, 212 Reptiles amniotic eggs, 120–124, 208, 210, 211 Carboniferous, 120–131 defined, 121 evolution, 121, 127–128 gigantism, 127 heart, 125 Jurassic, 199 live births, 122, 123, 144, 211 locomotion, 124–125, 135 mammal-like, see Therapsids nasal structure, 147, 149, 153–154 Permian extinction, 135, 141, 144 respiratory systems, 124–125, 135, 147, 153–154, 164, 171, 172, 173, 177 return to sea, 160, 164 size, 130–131 thermoregulation, 125–130, 149–150, 151 Respiration (aerobic) and respiratory systems. See also Gills; Lung systems; individual system components absorption surface, 262 air breathers, 18–19, 21, 262–263 blood pigments, 13, 14–15, 263 as body plan driver, 2, 6–7, 10–11, 19, 20, 26, 27–28, 42–48, 111, 124–125 breathing rate, 26–27 Cambrian animals, 60–67 and carbon dioxide, 14, 15, 18, 19, 23, 24, 62 Carrier’s Constraint, 124, 166, 168 coral reefs as part of, 83–84 countercurrent, 173 cuirassal breathing, 186 defensive systems, 22, 71 defined, 25 diving adaptation, 152 efficiency of, ix–x, 27–28, 62–63, 75, 115, 147, 148, 173, 174, 235 endothermy and, 146, 147, 150 and energy metabolism, 12–15 as evolutionary pathway, 25–26, 60, 61, 67–75, 77 as feeding organs, 27, 66, 70, 166 gas exchange, 25 land colonization and, 89, 90, 96–97, 105, 124–125 locomotion and, 20, 22, 24, 61, 65, 71, 74, 75, 85, 124–125, 135, 166, 168–169, 172 oxygen environment and, 18–20, 62–63, 95, 130, 153–154, 160–161, 174

OCR for page 265
Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere pH and, 15 plants, 12, 14 protective structures as, 67–68 sensory processing system and, 20 size and shape of animals and, 19–20, 21, 26, 87, 111–112, 115 skin, 103 surface area, 263 temperature and, 19 tracheal system, 115 transition from gill to lung, 100, 103, 104–105 water-breathers, 18–19, 20, 21, 262–263 and water loss, 146, 147 Respiration (anaerobic) and respiratory systems, 12, 14 Retallack, Greg, 139, 140, 141 Rhipidistians, 100 Rhynchosaurs, 162 Romer, Alfred, 103, 104 Romer’s Gap, 103, 104–108, 109 Ruben, John, 148, 173, 175, 178–179, 180, 181, 182, 185, 187, 197, 200, 206, 211, 212 Rugose corals, 83, 144 Runnegar, Bruce, 68 S Salamanders, 22, 23, 125, 166 Salinity of water, 18 Saperion, 57 Saurians, 2 Saurischians, 47, 48, 152, 168, 170–171, 174, 176, 178, 180, 181, 183, 185, 195–197, 199, 200, 201–202, 204–205, 206, 207, 211 Sauropods, 175, 186, 201, 202, 203, 205, 211 Scaphopods, 68 Scipionyx, 180 Scleractinian corals, 160, 163, 199 Scleromochlus, 169 Scorpions, 91, 95, 96, 97–98, 112, 113, 115, 125 Scotese, C., 231 Sea anemones, 63 Sea cucumbers, 64 Sea level change, 38, 232 Sea lilies, 113–114 Sea Pens, 64 Sea scorpions, 57 Sea squirts, 76 Sea urchins, 64, 65 Sedimentary record dating, 104 Greenland, 143 red beds, 34 stratified, 3 Segmentation, 91 functions of, 12, 57, 58–63 insects, 59 and locomotion, 12, 61, 62 as repeat gill system, 60–63, 65, 69, 92 Seismosaurus, 208 Sepkoski, Jack, 44, 48 Sereno, Paul, 192, 203, 204 Seymour, Roger, 150 Shonisaurus, 164 Siberian traps, 140–141, 233 Sidor, Christian, 131, 154 Silurian-Devonian interval amphibians, 100–104 arthropods, 91, 93, 95–96, 98, 99 insects, 90, 91, 95, 97, 98 land colonization, 87, 90, 92–108 landscape, flora, and fauna, 88, 89, 90–92 mass extinctions, 91, 92 oxygen levels, 87, 88, 89–90, 91, 98, 109 respiratory systems of land animals, 89–90 Romer’s Gap, 104–108, 109 time interval, 89, 90 Silverfish, 90 Sinosauropteryx, 180 Sipunculans, 15 Skeletons, oxygen and, 13 Smith, Roger, 154, 165

OCR for page 265
Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere Snakes, 172, 188 Spiders, 95, 96, 97, 101, 112, 113 Spiny nautiloid, 132, 136 Sponges, 10, 12, 56, 58, 64, 67, 82, 83, 86, 95, 114 Springtails, 90, 97 Squid, 70, 72, 75, 218 Stanley, Steve, 120, 227 Starfish, 64 State University of New York, 139 Staurikosaurus, 163, 168 Stegosaurs, 202, 203 Sterols, 13 Stromatolites, 136–137 Stromotoporoids, 83 Sulfur, elemental, 33, 36 Sulfur cycle, 36–37 Sulfur dioxide, 37 Sulfur-metabolizing bacteria, 134, 136, 141–142 Sunlight. See Insolation changes Synapsids, 125, 126, 130, 146, 211 T Tabulate corals, 83, 144, 163 Temperatures, ambient, 10 carbon dioxide and, 189; see also Greenhouse effect and egg laying strategy, 210 and evolution, 42, 43, 44–45 and metabolic rate, 188–191 modeling over time, 39 and oxygen content, 18, 35, 39, 230 and stress of low oxygen, 48 and thermoregulation, 125, 146–147, 149 Tertiary Period, 41 mammalian diversification, 3 Tetanurans, 202 Thecodonts, 168, 195, 196, 197 Therapsids, 26, 125, 128–129, 130, 131, 144, 147, 148, 151, 153, 160, 165, 195, 196, 197, 212, 224 Thermoregulation. See also Ectothermy; Endothermy body covering and, 126 insects, 188 large animals, 125, 148 oxygen levels and, 148–149 reptiles, 125–130 Therocephalians, 130, 147 Theropods, 177, 181 Thrinaxodon (premammal), 1 Thyreaphorans, 202 Tiktaalik, 88, 106 Triassic Explosion adaptive radiations, 157 bipedal animals, 162–171 carbon dioxide levels, 138, 184, 186, 204 cause, 180 climate and, 43, 184, 186 dinosaurs, 3, 8, 47, 161, 162–163, 165–171, 177–180, 184–188, 191–194, 196, 201–202, 204, 209, 224 disparity in body plans, 159–163, 165 diversity of tetrapods, 196 importance, 161 mammals, 1, 3, 8, 130, 165, 196, 224 marine life, 159–160, 163–164, 188–191, 214, 215 mass extinctions, 48, 161, 164, 194, 195–197, 203, 204, 216 oxygen levels and, 47, 48, 157, 158, 159, 160, 162, 180, 184, 186, 191–193, 194, 195, 204, 215 plant life, 161 rebound, 164–165 respiratory adaptations, 165 size of animals, 131 terrestrial life, 161–162 time interval, 41, 159, 164 Trilobites, xi body plan, 50, 51, 59–62 extinctions, 78, 81, 84, 86, 92, 133, 137, 144, 161 first appearance, 52

OCR for page 265
Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere redlichiacean, 57 respiratory system, 59, 60, 61–63, 92 segmentation, 59, 60, 92 Tritylodon, 131, 197 Troodontids, 207 Tunicates, 76–77, 78 Turtles, 126, 127, 208, 210, 212 Tyrannosaurids, 206 Tyrannosaurus rex, 167, 170, 202, 207 U Ultraviolet radiation, 10, 35, 68, 143 University of California, 42 at Berkeley, 153, 176, 207 at Irvine, 188 at Santa Barbara, 139, 225 University of Chicago, 156, 204 University of Oregon, 139 University of Washington, 131, 141 Uranium oxides, 34 sedimentary minerals, 37–38 Urochordata, 76–77 V Valentine, James, 10, 60, 61 VandenBrooks, John, 123, 235 Varanids, 124 Ventastega, 102 Vermeij, Gary, 42–43 Vertebrates, 3 body plan, 10, 76 evolution of, 46–47, 75–78, 100–104 first, 57–58 gigantism, 113, 130 gill structures, 22 heart, 25 high-oxygen assemblage, 46–47 land colonization, 93, 95, 99, 100–104, 107 low-oxygen assemblage, 47 lung systems, 27 respiratory pigments, 15 Vetulicola, 57 Vicuna, 27 Volcanoes continental drift and, 232, 234 degassing, 38, 220, 229 gas composition, 33, 35, 37, 142 W Water vapor, 32, 33 Watson, Andrew, 39 Wedel, Matt, 176, 178 Weischampel, David, 184 Wells, Martin, 217 Williford, Ken, 195 Wilson, E. O., 155 Wilson, J. Tuzo, 233–234 Wilson Cycle, 233–234 Wolcott, Charles, 2–3, 56 Wray, Charles, 52 Y Yale University, 38, 119, 123 Z Zelenitsky, Darla, 211