National Academies Press: OpenBook
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×

AERONAUTICS INNOVATION

NASA’S CHALLENGES AND OPPORTUNITIES

Committee on Innovation Models for Aerospace Technologies

Board on Science, Technology, and Economic Policy

Policy and Global Affairs

Stephen A. Merrill, Editor

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES

THE NATIONAL ACADEMIES PRESS
Washington, D.C.
www.nap.edu

Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×

THE NATIONAL ACADEMIES PRESS
500 Fifth Street, N.W. Washington, DC 20001

NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance.

This study was supported by Contract # NASW-99037, Task Order #103 between the National Academy of Sciences and the National Aeronautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the organizations or agencies that provided support for the project

Additional copies of this report are available from the
National Academies Press,
500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); http://www.nap.edu.

International Standard Book Number 0-309-10188-3

Limited copies are available from:

Board on Science, Technology, and Economic Policy

National Research Council

500 Fifth Street, N.W. K574

Washington, DC 20001

Phone: 202-334-2200

Fax: 202-334-1505

The cover design incorporates an image from a simulation of airplane traffic over the United States at 6:30 p.m. EDT on September 6, 2001. The simulation was produced using Future ATM Concepts Evaluation Tool (FACET) by the Aviation Systems Division at the NASA Ames Research Center, Moffett Field, CA.

Copyright 2006 by the National Academies. All rights reserved.

Printed in the United States of America

Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×

THE NATIONAL ACADEMIES

Advisers to the Nation on Science, Engineering, and Medicine


The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Ralph J. Cicerone is president of the National Academy of Sciences.


The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Wm. A. Wulf is president of the National Academy of Engineering.


The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine.


The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Ralph J. Cicerone and Dr. Wm. A. Wulf are chair and vice chair, respectively, of the National Research Council.

www.national-academies.org

Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×

This page intentionally left blank.

Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×

COMMITTEE ON INNOVATION MODELS FOR AEROSPACE TECHNOLOGIES

ALAN SCHRIESHEIM (Chair), Director Emeritus,

Argonne National Laboratory

MEYER J. BENZAKEIN, Wright Brothers Institute Professor,

Ohio State University

WILLIAM E. COYNE,

3M (retired)*

JEROME J. GASPAR, Senior Vice President,

Engineering and Technology, Rockwell Collins

STANLEY KANDEBO, Assistant Managing Editor,

Aviation Week & Space Technology**

GLENN MAZUR,

College of Engineering, University of Michigan (ret.)

HENRY MCDONALD, Distinguished Professor, Chair of Excellence in Computational Engineering,

University of Tennessee at Chattanooga

DUNCAN T. MOORE, Chief Executive Officer,

Infotonics Technology Center, Rochester, NY

JOSEPH MORONE, President,

Albany International

MARK MYERS, Visiting Executive Professor of Management,

Wharton Business School, University of Pennsylvania

NICHOLAS S. VONORTAS, Professor of Economics and International Affairs and Director,

Center for International Science and Technology Policy, George Washington University

TODD A. WATKINS, Professor,

College of Business and Economics, Lehigh University

DEBORAH L. WINCE-SMITH, President,

Council on Competitiveness

STEPHEN A. MERRILL, Study Director (from September 2004)

RUSSELL MOY, Study Director (until September 2004)

CRAIG SCHULTZ, Senior Research Associate (until September 2005)

KENNETH JACOBSON, Consultant

CYNTHIA GETNER, Financial Officer

MARIZA SILVA, Project Assistant

*  

Resigned from the committee as of January 2005.

**  

Resigned from the committee as of November 2004.

Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×

BOARD ON SCIENCE, TECHNOLOGY, AND ECONOMIC POLICY

DALE JORGENSON (Chair), Samuel W. Morris University Professor,

Harvard University

BILL SPENCER (Vice-Chair), Chairman Emeritus,

International SEMATECH

M. KATHY BEHRENS, Managing Director for Medical Technology,

Robertson Stephens Investment Management

KENNETH FLAMM, Professor and Dean Rusk Chair in International Affairs,

LBJ School of Public Affairs, University of Texas-Austin

BRONWYN HALL, Professor of Economics,

University of California, Berkeley

JAMES HECKMAN, Henry Schultz Distinguished Service Professor of Economics,

University of Chicago

DAVID MORGENTHALER, Founding Partner,

Morgenthaler Ventures

MARK B. MYERS, Visiting Executive Professor of Management,

Wharton School, University of Pennsylvania

ROGER NOLL, Morris M. Doyle Centennial Professor of Economics and Director,

Public Policy Program, Stanford University

EDWARD E. PENHOET, Director,

Science and Higher Education Programs, Gordon and Betty Moore Foundation

ARATI PRABHAKAR, Partner,

U.S. Venture Partners

WILLIAM J. RADUCHEL, Chairman and Chief Executive Officer,

Ruckus Network

JACK SCHULER, Chairman of the Board of Directors,

Ventana Medical Systems, Inc.

SUZANNE SCOTCHMER, Professor of Economics and Public Policy,

University of California, Berkeley

STEPHEN A. MERRILL, Executive Director

CHARLES WESSNER, Program Director

SUJAI SHIVAKUMAR, Program Officer

DAVID DIERKSHEIDE, Program Officer

CRAIG SCHULTZ, Senior Research Associate (until September 2005)

McALISTER CLABAUGH, Program Associate

Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×

Preface

The Aeronautics Research Mission Directorate (ARMD) of the National Aeronautics and Space Administration (NASA) seeks to create an environment that fosters the application of the results of its R&D program in advanced airframe, engine, emissions, air safety, and air traffic control technologies. Application of the technologies developed by NASA is dependent on a variety of government and private-sector clients or customers—the airframe and aircraft engine industries, the military services, and the regulatory and operational arms of the Federal Aviation Administration (FAA). To help produce a more robust innovation climate, ARMD asked the National Academies’ Science, Technology, and Economic Policy (STEP) Board to identify from the private and public sectors practices, tools, and methodologies that could maximize NASA’s ability to influence innovation outcomes positively.

The National Academies assembled a committee composed of experts in private-sector technology management, public policy and administration, and economics. Included were people experienced not only in different areas of aeronautics technology development but also in information technology, optoelectronics, and materials. The committee organized two public workshops. Participants in the first workshop included experts from industry, government, and academia who discussed the application of modern innovation techniques to a broad range of entities. The second workshop focused more directly on the aviation sector. Participants included

Page viii Cite
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×

senior industry executives, academic experts and consultants, former high-level NASA and FAA officials, and representatives from the Air Force and the FAA-based interagency Joint Planning and Development Office, charged with coordinating federal agency efforts to plan and implement a 21st century air traffic control system in the United States.

Committee members and staff also visited three of the NASA research establishments engaged in aeronautics R&D: the Ames Research Center in California, the Glenn Research Center in Ohio, and the Langley Research Center in Virginia. ARMD has direct administrative responsibility for Glenn and Langley as well as the Dryden Research Center in California; Ames was recently transferred to the NASA science program office. At each of the locations we visited, we interviewed top center managers as well as R&D program and project managers. These interviews were supplemented by in-person or telephone discussions with other individuals knowledgeable about NASA and the aerospace industry. Of course, NASA headquarters officials participated in the workshops and committee staff conferred with them throughout the project.

The committee thoroughly reviewed the large volume of reports in the past few years on the aerospace industry and government policies affecting it. These efforts ranged from broad assessments of the future of the U.S. industry by government commissions and such private organizations as the Aerospace Industries Association to technical evaluations of the quality of NASA’s aeronautics program by committees assembled under the National Academies’ Aeronautics and Space Engineering Board. The reports conclude that the nation has pressing economic and security needs in aviation ranging from meeting increasing international competition in aircraft and engines to expanding air travel capacity while maintaining safety and reducing adverse environmental impacts. In addressing these needs, NASA can play an important role that is not served by other parties. Previous National Academies’ reports have found that NASA’s R&D portfolio generally exhibits high technical merit. Our committee accepted this judgment, as we lacked the breadth of expertise to make an independent evaluation of the technical merit of the agency’s activities. Finally, the committee reviewed the recent budget history and personnel profile of the NASA aeronautics program, including congressional testimony on the President’s FY 2006 budget request.

A vivid picture emerged from the workshops, center visits, consultations, literature review, and budget analysis. Despite strong private-sector support for a broad and robust federal government role in civil aeronautics

Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×

technology development, Congress and recent administrations have not come to terms on what are widely regarded as nationally important NASA aeronautics missions and the level of resources needed to address them effectively and in a timely fashion. On the contrary, the budget has declined steadily over a seven-year period. In response, ARMD and its predecessors have attempted to do as much or more with less, spreading resources too thinly to ensure their effectiveness and the application of the R&D results. This has been a growing problem for several years, but it was brought home most forcefully by the President’s FY 2006 request for a sharply reduced ARMD budget, forcing a radical scaling back of the Vehicle Systems Program (VSP) R&D to pursue only a few of the technology development activities in its portfolio. Furthermore, the administration’s out-year budget projections to 2010 showed a 50 percent decrease in the aeronautics R&D budget and personnel overall. Although arguably beyond our purview, these circumstances were too central to the viability of NASA’s aeronautics program for our committee to ignore, even though they occurred in the final stages of our deliberations.

As described in the report’s first chapter, the budget proposal exposed the lack of agreement between government and the aeronautics community about the federal government’s role in civilian aviation generally and NASA’s role in aviation technology in particular. Former Associate Administrator Victor Lebacqz acknowledged as much in defending the President’s FY 2006 budget request before the House Science Committee in March 2005. He said that currently there are two contending points of view. One, reflected in the reports described earlier, is that the aviation sector is critically important to national welfare and merits government support to ensure future growth and market share despite fierce international competition. This implies an expansive public and private research and development program. The other, reflected in the White House’s budget submission, is that as the aviation industry approaches maturity and commoditization, the government can retrench and leave technology development to the private sector. Interestingly, he neglected to mention the public good objectives—mobility, safety, and environmental protection—served by NASA’s R&D involvement.

The proposed retrenchment had a galvanizing effect. In the FY 2006 Appropriations Act, congressional appropriators rejected the proposed cut and restored the ARMD budget to its FY 2005 level or slightly above. At the same time, the authorizing committees secured passage of the NASA Authorization Act (P.L. 109-155) calling on the administration to prepare a

Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×

policy statement on aeronautics as a basis for further discussion with Congress. Meanwhile, a new NASA administrator and associate administrator withdrew the proposed scaling back of the VSP program and set to work on a new plan for ARMD.

These are encouraging signs that a policy consensus could emerge and a potentially fatal retrenchment be avoided. But in the near future there is unlikely to be a large infusion of new resources. Given that the program will probably continue to operate in a highly resource-constrained environment, the first principle of modern innovation management is highly relevant. It is that the highest priority projects need to be identified and the less important projects winnowed out. Beyond that, best practices and techniques for NASA’s aeronautics R&D management are needed in three areas—transition planning, financial management, and personnel management. These are elaborated in Chapter 2 of the report. We think that these principles and practices, if applied consistently to a more focused portfolio of activities, could facilitate the implementation of NASA-developed technologies.

Our committee also heard suggestions for reorganization of the NASA aeronautics program. These included the creation of an agency operating in the mode of the Defense Advanced Research Projects Agency (DARPA)—that is, an expert staff of managers outsourcing projects to firms and universities. Another suggestion was to convert the research centers into contractor-operated institutions, as in the Department of Energy. A third proposal was to raise the stature and increase the independence of the aeronautics program within NASA, perhaps along the lines of the FAA’s relationship to the Department of Transportation. Evaluating these options was not our assigned task, although we observe some characteristics of DARPA that raise questions about whether it is an appropriate model for NASA. In any case, we concluded that they are distinctly secondary to the question of what the federal government’s role should be in developing new technologies for the nation’s air transportation system. Failing to answer that question puts the program on a glide path to irrelevance.

This volume has been reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise, in accordance with procedures approved by the National Academies’ Report Review Committee. The purpose of this independent review is to provide candid and critical comments that will assist the institution in making its published report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The re-

Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×

view comments and draft manuscript remain confidential to protect the integrity of the process.

We wish to thank the following individuals for their review of this report: Jeremiah Creedon, Old Dominion University; George Donohue, George Mason University; Steve Flajser, Loral Space Systems; Richard Golaszewski, GRA, Inc.; Michael Leahy, Air Force Research Laboratory; Earll Murman, Massachusetts Institute of Technology; Dorothy Robyn, The Brattle Group; and David Whelan; Phantom Works, Boeing.

Although the reviewers listed above have provided many constructive comments and suggestions, they were not asked to endorse the conclusions or recommendations, nor did they see the final draft of the report before its release. The review of this report was overseen by John Ahearne, Sigma Xi, the Scientific Research Society, and Thomas Young, Lockheed Martin Corporation, retired. Appointed by the National Academies, they were responsible for making certain that an independent examination of this report was carried out in accordance with institutional procedures and that all review comments were carefully considered. Responsibility for the final content of this report rests entirely with the authoring committee and the institution.

Alan Schriesheim, Chair

Committee on Innovation Models for Aerospace Technologies

Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×

This page intentionally left blank.

Page xiii Cite
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×

List of Acronyms and Abbreviations


AFRL

Air Force Research Laboratory (DOD)

AIA

Aerospace Industries Association

ARC

Ames Research Center (NASA)

ARMD

Aeronautics Research Mission Directorate (NASA)

ASME

American Society of Mechanical Engineers

ASP

Airspace Systems Program (NASA/ARMD)

ATC

air traffic control

ATM

air traffic management

ATO

Air Traffic Organization (FAA)

AvSSP

Aviation Safety and Security Program (NASA/ARMD)


COCO

contractor-owned contractor-operated research center


DARPA

Defense Advanced Research Projects Agency (DOD)

DFRC

Dryden Flight Research Center (NASA)

DHS

U.S. Department of Homeland Security

DOD

U.S. Department of Defense

DOT

U.S. Department of Transportation


EPA

U.S. Environmental Protection Agency


FAA

U.S. Federal Aviation Administration (DOT)

FFRDC

federally funded research and development center

FY

fiscal year


G&A

general and administrative expenses

GOCO

government-owned contractor-operated research center

GOGO

government-owned government-operated research center

GPS

global positioning system

GRC

Glenn Research Center (NASA)

Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×

HR

human resources


JPDO

Joint Planning and Development Office (FAA)


LRC

Langley Research Center (NASA)


MOA

memorandum of agreement

MOT

management of technology

MOU

memorandum of understanding


NACA

National Advisory Committee on Aeronautics

NASA

National Aeronautics and Space Administration

NIA

National Institute of Aerospace

NIH

National Institutes of Health

NOAA

National Oceanographic and Atmospheric Administration

NSF

National Science Foundation

NSTB

National Transportation Safety Board


OMB

Office of Management and Budget (Executive Office of the President)

OSTP

Office of Science and Technology Policy (Executive Office of the President)


PATCO

Professional Air Traffic Controllers’ Association


QFD

quality function deployment


R&D

research and development

RFP

request for proposals

ROA

remotely operated aircraft

RTP

research transition plan


SEWP

science and engineering workstation procurement

STEP

Board on Science, Technology, and Economic Policy (The National Academies)


TMA

traffic management advisor

TQM

total quality management

TRL

technology readiness level

TSA

Transportation Security Administration (DHS)


UARC

university-affiliated research center

UAV

unmanned air vehicle

USDA

U.S. Department of Agriculture


VSP

Vehicle Systems Program (NASA/ARMD)


WCF

working capital fund

Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×

This page intentionally left blank.

Page xvii Cite
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×

List of Boxes, Tables, and Figures

BOX

1-1

 

Technical Needs of Aeronautics

 

16

TABLES

1-1

 

Administration Budget Request and Projections for NASA Aeronautics R&D, FY 2005-2010 ($ millions)

 

24

1-2

 

Projected NASA Aeronautics Research Centers’ Civil Service and Contractor Personnel, FY 2005-2010

 

29

FIGURES

1-1

 

NASA Aeronautics R&D Budget Requests and Actual Budgets, 1990-2000

 

25

1-2

 

NASA Aeronautics R&D Budgets, 1959-2003 (constant 2002 dollars)

 

26

Page xviii Cite
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×

This page intentionally left blank.

Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×
Page R1
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×
Page R2
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×
Page R3
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×
Page R4
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×
Page R5
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×
Page R6
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×
Page R7
Page viii Cite
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×
Page R8
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×
Page R9
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×
Page R10
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×
Page R11
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×
Page R12
Page xiii Cite
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×
Page R13
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×
Page R14
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×
Page R15
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×
Page R16
Page xvii Cite
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×
Page R17
Page xviii Cite
Suggested Citation:"Front Matter." National Research Council. 2006. Aeronautics Innovation: NASA's Challenges and Opportunities. Washington, DC: The National Academies Press. doi: 10.17226/11645.
×
Page R18
Next: Summary »
Aeronautics Innovation: NASA's Challenges and Opportunities Get This Book
×
 Aeronautics Innovation: NASA's Challenges and Opportunities
Buy Paperback | $41.00 Buy Ebook | $32.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

NASA is a global leader in aeronautics research and development — fostering advances in aviation safety and emissions, propulsion technology, and many other areas. And the agency's Aeronautics Research Mission Directorate (ARMD) has played a vital role in the U.S. aeronautics industry. In recent years, the directorate's leaders and experts outside the agency have sought ways to speed innovative uses of ARMD's research results. But the directorate faces management challenges that make it difficult for such applications to succeed — or to occur at all. This report from the National Academies' National Research Council, offers the agency guidance on how to manage the transfer of technology to external users, as well as implement flexible personnel and financial-management practices. The report also points out problems that stem from a lack of agreement on ARMD's future direction and several years of federal budget cuts.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!