National Academies Press: OpenBook

Battling Malaria: Strengthening the U.S. Military Malaria Vaccine Program (2006)

Chapter: Appendix C Suggested Design of Trials for Testing Malaria Vaccines in Nonimmune Adults Visiting Endemic Areas

« Previous: Appendix B Current Requirements for a Malaria Vaccine
Suggested Citation:"Appendix C Suggested Design of Trials for Testing Malaria Vaccines in Nonimmune Adults Visiting Endemic Areas." Institute of Medicine. 2006. Battling Malaria: Strengthening the U.S. Military Malaria Vaccine Program. Washington, DC: The National Academies Press. doi: 10.17226/11656.
×

Appendix C
Suggested Design of Trials for Testing Malaria Vaccines in Nonimmune Adults Visiting Endemic Areas

A total of three critical phase 3 trials of efficacy is envisioned. All three trials would be randomized (at the level of the individual subject), controlled, and double blind (or blinded observer). In the two initial small trials, the subjects, under close clinical supervision, would not take concomitant chemoprophylaxis. In the third study, the participants would be given chemoprophylaxis, but it is assumed that at least 10 percent of them would not take it. Clinical supervision would still be provided. In this way the study would be analogous ethically to experimental challenge studies where subjects who do not take chemoprophylaxis are exposed to the bites of five Anopheles mosquitoes infected with P. falciparum.

TRIALS IN THE ABSENCE OF CHEMOPROPHYLAXIS

In the initial two small phase 3 efficacy studies in Western Kenya (or perhaps Ghana or Indonesia), the subjects would be entirely dependent on the accompanying medical staff to provide prompt diagnosis of malaria, to initiate optimal specific therapy, and to maintain follow-up to avoid complications. During these two relatively small initial efficacy trials, the opportunity would be taken to collect sera and peripheral blood mononuclear cells from the subjects at baseline and at various time points thereafter to perform measurements of serum antibodies and cell-mediated immune responses. If the vaccine proves efficacious, the hope would be to identify immunologic correlates of protection.

To have 90 percent power to detect a statistically significant differ-

Suggested Citation:"Appendix C Suggested Design of Trials for Testing Malaria Vaccines in Nonimmune Adults Visiting Endemic Areas." Institute of Medicine. 2006. Battling Malaria: Strengthening the U.S. Military Malaria Vaccine Program. Washington, DC: The National Academies Press. doi: 10.17226/11656.
×

ence (alpha = 0.025, single tail) in the attack rate for clinical malaria in vaccinees versus controls (based on estimated 60 percent vaccine efficacy and a lower limit of 30 percent for the 95 percent confidence interval [CI]), the trial would have to be large enough to allow detection of a total of 160 confirmed P. falciparum clinical malaria cases.

Some assumptions for design of the trials without chemoprophylaxis include the following:

  • At least 70 percent of the U.S. control subjects will develop clinical malaria during approximately 5 months of stay in peak transmission season. (It is recognized that this is likely a conservative estimation as the attack rate in controls is more likely to approach 100 percent).

  • Because of the remoteness of the geographic location, the duration of local exposure (approximately 5–6 months) and the other demands of participating in an intensive, complex vaccine trial, a dropout rate (loss to follow-up) of up to 18 percent must be expected.

A total of 164 analyzable subjects per group is needed to have 90 percent power to detect a significant difference (alpha = 0.025, single tail) if the expected attack rate in controls is 70 percent and expected vaccine efficacy is 60 percent (with a lower limit of 30 percent for the 95 percent CI). If 200 subjects are randomly allocated to the malaria vaccine group and 200 to the control group, with 18 percent loss to follow-up, at the end of the study there will remain approximately 164 vaccine and 164 control subjects available for analysis. At the expected attack rate, this would yield about 115 confirmed P. falciparum cases among the controls and about 46 cases among the vaccinees (60 percent proportionate reduction); the 161 cases in this scenario would provide the total of 160 cases needed to address the primary aim. With these results as an example, the 95 percent CI around the 60 percent point estimate of vaccine efficacy would be 43 percent lower limit and 72 percent upper limit.

If this first phase 3 efficacy trial in subjects not under cover of chemoprophylaxis is successful, the committee proposed that a corroborating trial of identical design be carried out one season later. This trial would provide a second opportunity to collect clinical specimens in the search for immunologic correlates of protection.

TRIALS IN THE PRESENCE OF CHEMOPROPHYLAXIS

If the corroborating phase 3 trial not under chemoprophylaxis also yields positive results, it would be appropriate for the Military Infectious Diseases Research Program (MIDRP) Malaria Vaccine Program to undertake a much larger phase 3 trial with 10 times as many subjects in the

Suggested Citation:"Appendix C Suggested Design of Trials for Testing Malaria Vaccines in Nonimmune Adults Visiting Endemic Areas." Institute of Medicine. 2006. Battling Malaria: Strengthening the U.S. Military Malaria Vaccine Program. Washington, DC: The National Academies Press. doi: 10.17226/11656.
×

vaccine and control groups, all of whom would be issued standard military chemoprophylaxis. Although subjects would be recommended to take chemoprophylaxis, there would be no systematic direct supervision of subjects taking their daily medication. Rather this would be left to the discretion of the individual subject, recognizing that in real-life conditions, a variable proportion of military personnel deployed to sites of known malaria risk do not take chemoprophylaxis in a reliable way. Accordingly, in a conservative assumption, 10 percent of the study subjects would fail to take chemoprophylaxis for sufficiently extended periods so that these subjects would be equivalent in risk to the nonprophylaxed subjects of the preceding two efficacy trials.

Thus, if 2,000 enrolled subjects were randomly allocated to receive the maturing candidate vaccine and 2,000 others to the control group, by the end of the study, despite some expected dropouts and loss to follow-up, approximately 1,640 analyzable subjects would be available in each group. Of these, because of random allocation, one would expect about 164 “nonchemoprophylaxed” subjects to be available for analysis in each group. Among the 1,640 analyzable control subjects, one would expect to detect around 115 cases of P. falciparum malaria (70 percent attack rate among the 164 controls who did not adhere strictly to chemoprophylaxis). One would also expect to detect 46 cases of P. falciparum malaria in the vaccine recipients (60 percent proportionate reduction); this constitutes a total of 161 cases between the two groups. The limits of the 95 percent CI around the 60 percent point estimate of vaccine efficacy, as in the previous example, would be 43 percent (lower limit) and 72 percent (upper limit) around the point estimate of efficacy.

Suggested Citation:"Appendix C Suggested Design of Trials for Testing Malaria Vaccines in Nonimmune Adults Visiting Endemic Areas." Institute of Medicine. 2006. Battling Malaria: Strengthening the U.S. Military Malaria Vaccine Program. Washington, DC: The National Academies Press. doi: 10.17226/11656.
×
Page 96
Suggested Citation:"Appendix C Suggested Design of Trials for Testing Malaria Vaccines in Nonimmune Adults Visiting Endemic Areas." Institute of Medicine. 2006. Battling Malaria: Strengthening the U.S. Military Malaria Vaccine Program. Washington, DC: The National Academies Press. doi: 10.17226/11656.
×
Page 97
Suggested Citation:"Appendix C Suggested Design of Trials for Testing Malaria Vaccines in Nonimmune Adults Visiting Endemic Areas." Institute of Medicine. 2006. Battling Malaria: Strengthening the U.S. Military Malaria Vaccine Program. Washington, DC: The National Academies Press. doi: 10.17226/11656.
×
Page 98
Next: Appendix D Patents »
Battling Malaria: Strengthening the U.S. Military Malaria Vaccine Program Get This Book
×
Buy Paperback | $48.00 Buy Ebook | $38.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Malaria is an infectious disease common to several parts of the world, including Africa, northern South America, and Asia. During their service in the military, U.S. active members may be sent to any part of the world, including parts of the world where Malaria is an issue. In Liberia in 2003, for example, there was a 28 percent attack rate in Marines who spent a short time ashore, and half of the 80 Marines affected needed to be evacuated to Germany. This was not only costly to the U.S. military but dangerous as well. To fight against this disease, there exists a Malaria Vaccine program in the U.S. military. However, there exists a variety of potential vaccine targets for the most severe and important form of malaria; malaria from the species Plasmodium falciparum. Issues also arise with the fact that there are three possible stages to create vaccines against—preerythrocytic, blood, or transmission.

The Department of Defense (DoD), through the commanding general of the U.S. Army Medical Research and Materiel Command (USAMRMC), requested that the Institute of Medicine (IOM) conduct a programmatic review of the military Plasmodium falciparum malaria vaccine research and development program. There was to be a focus on vaccine against the preerythrocytic and blood stages. The IOM formed a committee of 11 experts with collective expertise in malaria vaccine research, parasite immunology, malarial biology, clinical trials and regulatory affairs, industrial and public-sector vaccine development, biologic products research and development (vaccinology), military research and development programs, tropical medicine, and public health.

The committee focused different tasks including determining whether the DoD malaria vaccine research and development program is scientifically sound and able to achieve the vaccine program objectives within specified timelines, recommending how to overcome significant, identified barriers, and identifying major strategic goals and timelines based on the material received and presentations made by the DoD's program representatives. Battling Malaria: Strengthening the U.S. Military Malaria Vaccine Program presents the committee's findings, current malaria vaccines, and recommendations for the development of the U.S. Military vaccine research.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!