Data Management

Theory must play a role in addressing the data storage and search problems associated with the increasingly large datasets generated by chemical imaging techniques.

INSTITUTIONAL CHANGE

Chemical imaging can provide detailed structural and functional information about chemistry and chemical engineering phenomena that have enormous impacts on medicine, materials, technology, and environmental sustainability. Chemical imaging is also poised to provide fundamental breakthroughs in the basic understanding of molecular structure and function. The knowledge gained through these insights offers the potential for a paradigm shift in the ability to control and manipulate matter at its most fundamental levels. A strategic, focused research and development program in chemical imaging supported by enhanced individual and multidisciplinary efforts will best enable this transformation in our understanding of and control over the natural world. This will include promoting novel approaches to funding mechanisms for chemical imaging and the development of standards for chemical image data formatting.

CONCLUSION

Imaging has a wide variety of applications that have relevance to almost every facet of our daily lives. These applications range from medical diagnosis and treatment to the study and design of material properties in novel products. To continue receiving benefits from these technologies, sustained efforts are needed to facilitate understanding and manipulation of complex chemical structures and processes. By linking technological advances in chemical imaging with a science-based approach to using these new capabilities, it is likely that fundamental breakthroughs in our understanding of basic chemical processes in biology, the environment, and human creations will be achieved.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement