bestos; (I) asbestiform amphibole minerals; (J) any of the minerals listed under subparagraphs (A) through (I) that has been chemically treated or altered, and any asbestiform variety, type, or component thereof; and (K) asbestos-containing material, such as asbestos-containing products, automotive or industrial parts or components, equipment, improvements to real property, and any other material that contains asbestos in any physical or chemical form.

People who have a diagnosis of asbestosis, lung cancer, or mesothelioma will be eligible to file a claim documenting their asbestos exposure. Eligibility may also be extended to any additional cancers that are found to be causally associated with asbestos by the report of the present IOM expert committee delineated as item (e) under Subtitle C, Section 121—Medical criteria. The IOM report will be binding on the administrator and the physicians’ panel that processes claims against the trust fund. The pending legislation was reported out of the Committee on the Judiciary on June 16, 2005, and was expected to be voted on early in 2006.

Asbestos fibers are known to be carcinogenic. The uniqueness and completeness of the carcinogenic activity of asbestos in mesothelial tissues is clear and undisputed. Most cases of mesothelioma are attributable to asbestos exposure. The role of asbestos in producing lung cancer, particularly in smokers, is also clear. Cancers at the sites included in the charge are largely of epithelial origin, so the underlying causal mechanism would be expected to be similar to that of lung cancer. Inasmuch as the determination of asbestos (in its various forms) as a human carcinogen is long established on the basis of findings of epidemiologic investigations and supportive animal and in vitro studies, this committee viewed its charge to be a more focused evaluation of whether asbestos causes cancer in particular organs. “Biologic plausibility” has been shown for asbestos’ carcinogenic potential in general, so this committee’s criteria for site-specific causality will differ somewhat from the determinations of whether an agent is a generic human carcinogen, as conducted by the International Agency for Research on Cancer and the US Environmental Protection Agency, for example.

OVERVIEW OF PATTERNS OF ASBESTOS USE AND RECOGNITION OF ITS HEALTH CONSEQUENCES

The physical and chemical properties of minerals classified as asbestos (see Chapter 3) have led to widespread applications of these fibrous substances beginning as long as 2,000 years ago. Those properties include heat stability and fire resistance, thermal and electric insulation, resistance to wear and friction, tensile strength and weavability, and resistance to chemical and biologic degradation (HHS 2004). Uses of asbestos burgeoned as the modern industrial era gained momentum in the 1880s, and industrial consumption peaked in the United States in 1973 (Virta 2002). The gradual



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement