oral microbes and such chronic conditions as cardiovascular disease, diabetes, and arthritis, and potentially in the detection and treatment of such ailments.

The second paper, contributed by veterinary biologist Mark Woolhouse, expands the ecological perspective to address the relationships among all hosts colonized by the same microbial species, and in particular, the web of relationships surrounding the transmission and survival of zoonotic pathogens in novel hosts. Woolhouse and coworker Sonya Gowtage-Sequeira present quantitative data on the diversity of human pathogens, investigate the association between emerging infectious diseases and host range, and examine the implications of having multiple hosts for pathogen evolution. Their findings reveal the importance of taking a broad, multidisciplinary, and ecological approach to the study of infectious disease rather than focusing on the interactions between individual host and microbe species.


Laura M. Smoot, James C. Smoot, Hauke Smidt, Peter A. Noble, Martin Könneke, Z. A. McMurry, David A. Stahl2

The interest in using saliva as a diagnostic medium has increased during the last decade, and recent technological developments are responsible for the advancement of its use as a diagnostic fluid (Streckfus and Bigler, 2002). There are several advantages to using saliva as a diagnostic fluid. Saliva is easy to collect, store, and ship, and, compared with the collection of blood, saliva collection is inexpensive and noninvasive, which is much safer for health-care workers (Slavkin, 1998). In the near future, salivary diagnostic devices based on highly parallel data collection methods (e.g., DNA microarrays) will be very useful tools for health-care professionals. DNA microarrays are now used as tools for developing a comprehensive characterization of oral diseases. For example, Li et al. (2004) used high-density oligonucleotide microarrays to profile transcripts found in saliva from head and neck cancer patients, and found that thousands of human mRNAs are present in cell-free saliva. In conjunction with collaborators, our laboratory is using DNA microarrays to detect microorganisms from the human oral cavity and, ultimately, to develop a microarray-based device for clinical applications.


Reprinted with permission from Advances in Dental Research. 2005;18:6–11.


LM Smoot, JC Smoot, PA Noble, M Könneke, ZA McMurry, and DA Stahl are from the Civil and Environmental Engineering, 302 More Hall, Box 352700, University of Washington, Seattle, WA 98195. H Smidt is from Wageningen University, Wageningen, Netherlands. DA Stahl is also the corresponding author, dastahl@u.washington.edu.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement