• It can be said with a high level of confidence that global mean surface temperature was higher during the last few decades of the 20th century than during any comparable period during the preceding four centuries. This statement is justified by the consistency of the evidence from a wide variety of geographically diverse proxies.

  • Less confidence can be placed in large-scale surface temperature reconstructions for the period from A.D. 900 to 1600. Presently available proxy evidence indicates that temperatures at many, but not all, individual locations were higher during the past 25 years than during any period of comparable length since A.D. 900. The uncertainties associated with reconstructing hemispheric mean or global mean temperatures from these data increase substantially backward in time through this period and are not yet fully quantified.

  • Very little confidence can be assigned to statements concerning the hemispheric mean or global mean surface temperature prior to about A.D. 900 because of sparse data coverage and because the uncertainties associated with proxy data and the methods used to analyze and combine them are larger than during more recent time periods.

The main reason that our confidence in large-scale surface temperature reconstructions is lower before A.D. 1600 and especially before A.D. 900 is the relative scarcity of precisely dated proxy evidence. Other factors limiting our confidence in surface temperature reconstructions include: the relatively short length of the instrumental record (which is used to calibrate and validate the reconstructions); the fact that all proxies are influenced by a variety of climate variables; the possibility that the relationship between proxy data and local surface temperatures may have varied over time; the lack of agreement as to which methods are most appropriate for calibrating and validating large-scale reconstructions and for selecting the proxy data to include; and the difficulties associated with constructing a global or hemispheric mean temperature estimate using data from a limited number of sites and with varying chronological precision. All of these considerations introduce uncertainties that are difficult to quantify.

Despite these limitations, the committee finds that efforts to reconstruct temperature histories for broad geographic regions using multiproxy methods are an important contribution to climate research and that these large-scale surface temperature reconstructions contain meaningful climatic signals. The individual proxy series used to create these reconstructions generally exhibit strong correlations with local environmental conditions, and in most cases there is a physical, chemical, or physiological reason why the proxy reflects local temperature variations. Our confidence in the results of these reconstructions becomes stronger when multiple independent lines of evidence point to the same general result, as in the case of the Little Ice Age cooling and the 20th century warming.

The basic conclusion of Mann et al. (1998, 1999) was that the late 20th century warmth in the Northern Hemisphere was unprecedented during at least the last 1,000 years. This conclusion has subsequently been supported by an array of evidence that includes both additional large-scale surface temperature reconstructions and pronounced changes in a variety of local proxy indicators, such as melting on ice caps and the retreat of glaciers around the world, which in many cases appear to be unprecedented during at least the last 2,000 years. Not all individual proxy records indicate that the recent warmth is unprecedented, although a larger fraction of geographically



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement