in which means to an end are laid down.” The design process is a method of creating an effective design, a way of providing a structure for a creative endeavor (de Vries, 2005). By its very nature, design is a messy, complex process that varies depending on what is being designed and who is designing it. However, whether the designer is an engineer, an architect, or a professional working in the technological realm, design processes have some common elements, such as clarification of the nature of the problem, the setting of goals and limits for the project, and the delineation of the parameters of potential solutions. These elements have been formalized and are taught in engineering schools and elsewhere (Cross, 2000). In fact, the design process is a sufficiently important aspect of engineering and technology that, according to Technically Speaking (NAE and NRC, 2002), Standards for Technological Literacy (ITEA, 2002), and both sets of national science standards (AAAS, 1993; NRC, 1996), every technologically and scientifically literate person must have an understanding of it. According to ITEA, a technologically literate person must have the ability to apply the design process.

By its very nature, design is a messy, complex process that varies depending on what is being designed and who is designing it.

Because many members of the study committee for this report have backgrounds in engineering and technology, the committee decided to use the engineering design process to help address its charge. In fact, the engineering design process is also well suited to solving any problem that is poorly or imperfectly defined, such as the problem facing the committee.

The challenge of assessing technological literacy is difficult for several reasons. First, neither technology nor technological literacy can be easily defined. Second, although several sets of educational standards include descriptions of what a technologically literate person should know and be able to do, these standards and their associated curricula are relatively new and are largely untested. Third, the subject-matter connections among technology, mathematics, science, engineering, and history, just to name the most obvious subjects, are not well defined. Finally, assessments of technological literacy will necessarily be influenced by the large, and very complex, system of education in the United States.

The committee used a representative model of the engineering design process to organize its deliberations and, to some extent, the report as a whole. This approach had a number of benefits. First, the committee was able to approach its task in a structured, thoughtful way and to incorporate a unifying theme throughout the report. Second, the committee was able to provide a road map for others to follow in developing tools



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement