to enhance the utility of such forecasts. Such intermediaries would encourage new links and feedbacks between forecast producers and forecast users within the Enterprise. Last, the introduction of new uncertainty-explicit forecasts will generate the need for continuing validation, producing feedbacks from the forecast users to the forecast producers that may affect the manner of product generation and form of communication.

Although cooperation among sectors of the Enterprise would require some additional effort from all participants, several benefits are envisioned for each sector. NWS, through cooperation with academia and the research sector, gains access to state-of-the-science models, methods, and approaches, whereas through cooperation with the private sector and users it enhances the utility of forecast products, gains an understanding of the economic or market-driven forces of effective communication of uncertainty information, and receives feedback on forecast validation and user needs. The academic and research sectors gain access to NWS data and model resources for advancing research goals, receive feedback from NWS and the private sector for improving educational objectives, and develop new interdisciplinary areas of inquiry at the interface of physical, social, and behavioral sciences. For the private sector, close cooperation would facilitate the transfer of academic research to societal use and would ensure educator/researcher knowledge of the requirements of the workplace. Furthermore, the private sector gains access to validated operational predictions and data that may be used to generate value-added products tailored to user needs.

1.6
EDUCATION AS A CORNERSTONE OF THE TRANSITION TO A PROBABILISTIC VIEWPOINT

If the Enterprise is to make a successful transition from a predominantly deterministic mode of forecast generation and communication to one in which uncertainty information is an integral part of all products, substantial education and retraining of both users and providers of hydrometeorological predictions will be required. The university community will need to support changes in courses and curricula to ensure its graduates possess necessary knowledge of forecast uncertainty, methods for its generation, and the potential value of uncertainty information for meeting societal needs. NWS forecasters will need to master the underlying ideas of ensemble prediction and forecast uncertainty and will require retraining to deal with the new probabilistic forecast communication systems of the future. To facilitate such a transition NWS will need to establish new training materials, drawing on outside expertise in areas including the social sciences to create new tools such as educational modules for the Cooperative Program for Operational Meteorology, Education and Training dealing with forecast uncertainty. Similarly, the private sector will need to retrain its forecast personnel, both in the production and communication of uncertainty information. Reaching out to expertise beyond the traditional hydrometeorological community will increase the probabilities of success. Finally, the Enterprise will need to facilitate substantial outreach to the public and other users to acquaint them with the limitations of traditional single-value predictions and the considerable value of uncertainty information.

1.7
THE UNCERTAINTY IMPERATIVE

There is a confluence of compelling reasons for the Enterprise to transition to a new paradigm for hydrometeorological prediction, one in which uncertainty information is considered an integral and essential component of all forecasts. Prediction is inherently uncertain, and only by having access to actionable uncertainty information can users consider and apply the complete information required to make the best decision for their needs and situation. Fortunately, the demand for a transition to uncertainty communication is concurrent with an increasing ability to generate reliable uncertainty guidance.

The remainder of this report examines the psychological elements underlying use of uncertainty information (Chapter 2), reviews the strengths and weaknesses of the current operational systems for producing and verifying such forecasts (Chapter 3), and then evaluates current modes for communicating uncertainty information (Chapter 4). Based on this analysis, a series of overarching recommendations is presented in the final chapter. Actions in response to these recommendations will enable the transition to a new era in hydrometeorological prediction.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement