Birnbaum, L.S., and D.F. Staskal. 2004. Brominated flame retardants: Cause for concern? Environ Health Perspect. 112(1):9-17.

Broussard, L.A., T. Brustowicz, T. Pittman, K.D. Atkins, and L. Presley. 1997. Two traffic fatalities related to the use of difluoroethane. J. Forensic Sci. 42(6):1186-1187.

Broussard, L.A., A.K. Broussard, T.S. Pittman, and D.K. Lirette. 2000. Death due to inhalation of ethyl chloride. J Forensic Sci. 45(1):223-225.

Burke, T., H. Anderson, N. Beach, S. Colome, R.T. Drew, M. Firestone, F.S. Hauchman, T.O. Miller, D.K. Wagener, L. Zeise, and N. Tran. 1992. Role of exposure databases in risk management. Arch. Environ. Health 47(6):421-429.

CDC (Centers for Disease Control and Prevention). 2005. Third National Report on Human Exposure to Environmental Chemicals. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta, GA [online]. Available: [accessed Sept. 26, 2005].

Dor, F., W. Dab, P. Empereur-Bissonnet, and D. Zmirou. 1999. Validity of biomarkers in environmental health studies: The case of PAHs and benzene. Crit. Rev. Toxicol. 29(2): 129-168.

Jackson, R. 2005. Biomonitoring. Presentation at the Fourth Meeting on Human Biomonitoring of Environmental Toxicants, October 27, 2005, Irvine, CA.

Krimsky, S. 2005. The weight of scientific evidence in policy and law. Am. J. Public Health 95(Suppl. 1):S129-S136.

NRC (National Research Council). 1991. Monitoring Human Tissues for Toxic Substances. Washington, DC: National Academy Press.

Perbellini, L., N. Veronese, and A. Princivalle. 2002. Mercapturic acids in the biological monitoring of occupational exposure to chemicals. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 781(1-2):269-290.

Pirkle, J.L., L.L. Needham, and K. Sexton. 1995. Improving exposure assessment by monitoring human tissues for toxic chemicals. J. Expo. Anal. Environ. Epidemiol. 5(3):405-424.

Rubin, C., E. Esteban, R.H. Hill, Jr., and K. Pearce. 2002. Introduction—the methyl parathion story: A chronicle of misuse and preventable human exposure. Environ. Health Perspect. 110(Suppl. 6):1037-1040.

Schulte, P.A., and G. Talaska. 1995. Validity criteria for the use of biological markers of exposure to chemical agents in environmental epidemiology. Toxicology 101(1-2):73-88.

Sexton, K., L.L. Needham, and J.L. Pirkle. 2004. Human biomonitoring of environmental chemicals: Measuring chemicals in human tissue is the “gold standard” for assessing the people’s exposure to pollution. Am. Sci. 92(1):39-45.

Sharma, R.A., and P.B. Farmer. 2004. Biological relevance of adduct detection to the chemoprevention of cancer. Clin. Cancer Res. 10(15):4901-4912.

Sinks, T. 2005. Future Opportunities for Biomonitoring at CDC? Where we are and ? Where we go? Presentation at the Fourth Meeting on Human Biomonitoring of Environmental Toxicants, October 27, 2005, Irvine, CA.

Swan, S.H., K.M. Main, F. Liu, S.L. Stewart, R.L. Kruse, A.M. Calafat, C.S. Mao, J.B. Redmon, C.L. Ternand, S. Sullivan, and J.L. Teague. 2005. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ. Health Perspect. 113(8):1056-1061.

Thornton, J.W., M. McCally, and J. Houlihan. 2002. Biomonitoring of industrial pollutants: Health and policy implications of the chemical body burden. Public Health Reports 117(4):315-323.

WHO (World Health Organization). 2001. Biomarkers in Risk Assessment: Validity and Validation. Environmental Health Criteria 222. Geneva: World Health Organization [online]. Available: [accessed Dec.1, 2005].

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement