ently to a change in temperature. A record-early spring in Japan resulted in drastic decreases in seed set of two species normally pollinated by bees, but not in two others pollinated by flies (Kudo et al., 2004). A long-term study of life cycles of Mediterranean plants and animals showed that the phenology of plant leafing out, flowering, and fruiting changed at different rates, and all were different from changes recorded for butterfly emergence and the arrival of migratory birds (Peñuelas et al., 2002). The authors suggested that these changes could alter ecosystem structure and function. Migrating pollinators (for example, hummingbirds that overwinter in Mexico and reproduce in the United States) depend on corridors with flowers that bloom at the appropriate times during spring and fall migrations. If the timing of the migration does not coincide with flowering, the plants could suffer a loss of pollinators and the pollinators could face energetically expensive migratory flights with no opportunity to forage and replenish metabolic fuel along the way.

Thus, the evidence indicates that plants and their pollinators could respond differentially to climate change. Depending on the degree of variations in their responses, the consequences of climate change could range from subtle to dramatic. Alterations in nectar abundance or concentration could change the foraging behavior of pollinators, increasing or decreasing pollination of one flower by another of the same plant (geitonogamy); changing the quantities of pollen collected or deposited or the distances that pollen is transported—all can have significant effects on plant mating systems and genetic parameters. Changes in floral abundance could in turn influence the abundance and distribution of pollinators. The loss of synchrony that could result from differential responses in phenology of plants and pollinators could be important and possibly result in the loss of some historical mutualisms or the creation of new ones. It appears that this area of research warrants more attention, in view of the potential for climate change to disrupt plant-pollinator interactions significantly in the future.

The combined effects of climate change and other environmental changes (such as habitat fragmentation) have not been assessed for most pollination systems, but Warren and colleagues (2001) reported that 34 of 46 British butterfly species that might be expected to respond positively to climate warming at their northern climatic range margins in fact declined, as negative consequences of habitat loss outweighed the positive responses to climate warming over the past 30 years. Although half of the habitat generalists that also were mobile species increased their distributions, the other generalists and 89 percent of the habitat specialists declined in distribution, suggesting that the diversity of pollinators could decline substantially in the face of the combined pressures of climate change and habitat loss. The potent combination of environmental changes could cause substantial harm to many plant-pollinator interactions.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement