mortars, and grenades. Torso injuries are less common than in prior conflicts because of widespread use of body armor, but it does not protect the extremities or head. Infections of skin and orthopedic wounds of the extremities are the most common reported causes of inpatient consultations for OEF and OIF returnees at WRAMC (Zapor and Moran 2005).

A BAMC wound-bacteriology survey was conducted in 2004 at a Combat Support Hospital in Baghdad, Iraq (Zapor and Moran 2005). It covered 49 soldiers who had 61 wounds, primarily blast injuries of the extremities. Eighteen of the soldiers (with 20 wounds) underwent wound lavage, had antibiotics administered at the time of the injury, or both. Of the 40 bacteria obtained from 30 wounds, most were obtained from soldiers before they received antibiotics. Gram-positive commensal skin bacteria, such as Staphylococcus spp. and Micrococcus spp. were found in 93% of isolates. Less common were gram-negative bacterial genera, such as Pseudomonas, Chryseobacterium, and Escherichia. Two isolates demonstrated broad antibiotic resistance; both were methicillin-resistant Staphylococcus aureus. To reconcile the differences in the bacteriologic profiles noted in this unpublished survey with those at stateside military hospitals (the latter see more Acinetobacter spp. and extended-spectrum -lactamase-producing lactose-fermenters), Zapor and Moran recommended larger field hospital surveys from multiple locations, using best-practice sampling and microbiologic methods (Davis et al. 2005; Zapor and Moran 2005).

Wound infections occur shortly after the wounds themselves, with exceptions, such as infections associated with chronic osteomyelitis that are rare with modern medical care. Therefore, making an epidemiologic link to service in the war theater is rarely difficult. Current military medical practices include surgical debridement of wounds, probing of deep tissues, and cultures of wounds, bone, deep tissues, skin, and other fluids to find and treat infection. Such aggressive management prevents chronic osteomyelitis in the vast majority of wounded soldiers. If a stateside civilian, military, or Department of Veterans Affairs (VA) medical facility encounters chronic osteomyelitis, it is the one clear example of an infection that may result from underdetection and undertreatment or from hospital acquisition. That condition can theoretically manifest far from the war and later, although it will be rare, as judged from the near absence of modern case reports. Each case must be evaluated as to the epidemiologic, clinical, and microbiologic characteristics of the infectious disease to judge whether it is linked to the war or is community-acquired.

Other Nosocomial Infections

Many potential nosocomial organisms may go unrecognized if an outbreak is not apparent and not investigated. Observant clinical providers may reveal outbreaks that might otherwise be missed. For example, a nebulizer from a local manufacturer in Saudi Arabia caused an outbreak of Burkholderia cepacia in US National Guard troops deployed in the Middle East (Balkhy et al. 2005). US manufacturing adhering to Food and Drug Administration requirements would have been expected to virtually eliminate contaminated respiratory products for US troops, but the overseas pharmaceutical plant that made the inhalant medication was not under such scrutiny. Another example is a keratoconjunctivitis outbreak caused by adenovirus type 8 in troops in a hospital setting, but that may have been mistaken for a community-acquired organism if seen out of the context of the outbreak (Colon 1991). Given the relatively short time between exposure and symptoms, most nosocomial conditions would be associated temporally with active military duty in southwest and south-central Asia and would not present any confusion for

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement