PANEL SUMMARY

The panel considered whether there are differences between males and females in brain development and in average performance on cognitive tasks and whether those differences account for the large discrepancies in male and female representation among academic scientists.

Janet Hyde, of the University of Wisconsin-Madison, proposed the “novel concept of gender similarities” in cognitive abilities, noting that the mathematical, verbal and spatial skills involved in scientific work are all gender-stereotyped. Meta-analyses of 100 studies of math ability involving 3 million persons, including nine state assessments, show that the highly touted and widely reported gender differences in mathematical ability are in fact small or insignificant.

Diane Halpern, of Claremont McKenna College, observed that men and women are in fact both similar and different and “what you see depends on where you look.” The differences or similarities found depend on which tests and measures are used. She also emphasized that nature and nurture form a “false dichotomy,” are not independent variables, and “do not just interact.” The factors are instead “inextricably intertwined” because experience alters the biological underpinnings of behavior, and the resultant biology influences the types of experiences people have. Instead of the old two-part paradigm, she proposed a biopsychosocial conceptualization of the issue and the recognition that even small differences may have large effects over time because small effects accumulate into large ones.

Jay Giedd, of the National Institute of Mental Health, presented data from magnetic resonance imaging (MRI) studies of brain structure and development during adolescence showing both gender differences in the trajectory of brain development and the strong and lifelong influence of experience on the brain. MRI studies show “gray boxes,” not individual neurons, and behavioral interpretations are therefore “speculative.” The sex hormones estrogen and testoster-one are present both in males and females, and play a role in brain development, although hormones are not sole factors driving sex differences in the brain. Male brains show more morphological variance than female brains, but observations are based on group averages and not individuals, and overall, the brains of males and females are more alike than different.

Panelist Bruce McEwen, of Rockefeller University, presented evidence of complex sex differences in nonhuman brain response to stress and of the brain’s high adaptability and plasticity throughout the lifespan. Males and female humans differ in the processes and priorities they use in processing information. Genes, hormones, and experience exert different influences on human males and females, he concluded, but the cognitive differences between men and women appear to involve differing strategies of information processing rather than different “abilities.”



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement