Section 3.1 for a complete discussion of these stages). By examining cases such as these we can explore the value of the use of geospatial data and tools, the gap between today’s typical levels of geospatial preparedness on the one hand, and what could be done to lessen the impact and consequences of disasters on the other. Although the second and third scenarios are hypothetical, they almost inevitably will become real at some date in the future.



The terrorist attack that took place on September 11, 2001, in New York City resulted in thousands of lives lost, the collapse of the twin towers of the World Trade Center as well as damage to adjacent buildings, and extensive disruption of transportation and other lifeline systems, economic activity, and social activities within the city and the surrounding area. When the final accounting takes place, this attack will almost certainly constitute one of the most deadly and costly disaster events in U.S. history. In a very real sense, the September 11th tragedy, the nature of the damage that occurred, the challenges that the city’s emergency response faced, and the actions that were undertaken to meet those demands can be seen as a proxy—albeit a geographically concentrated one—for what a major earthquake can do in a complex, densely populated modern urban environment. Like an earthquake, the terrorist attack occurred with virtually no warning. As would be expected in an earthquake, fires broke out and many structures collapsed. As has been observed in major urban earthquakes and other disasters (e.g., Hurricane Katrina), structures housing facilities that perform critical emergency functions were destroyed, heavily damaged, or evacuated for life-safety reasons. Thus, the attack and its aftermath provide a useful laboratory for exploring a variety of engineering and emergency management issues and for learning lessons that can be applied in many other contexts.

The initial attack caused the collapse of the two main towers of the World Trade Center, but flaming debris from the impact of the first jet ignited a fire in a fuel tank in Building 7, weakening the structure so significantly that this building also collapsed, destroying one of the most sophisticated emergency operations centers (EOCs) in the country. Housed in the EOC were geospatial tools and municipal data that had been carefully accumulated over years to respond to numerous types of emergencies. Backup data, which were stored in another part of the same

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement