important. These assumptions are typically not true. A list of genes of interest may be available before the microarray experiment is conducted. What FDR cutoff values to use to pick follow-up genes and how to apply the FDR adjustment will be discussed.


Affymetrix, Inc. 2002. Statistical Algorithms Description Document [online]. Available: [accessed April 10, 2006].

Baldi, P., and A.D. Long. 2001. A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes. Bioinformatics 17(6):509-519.

Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B Met. 57(1):289-300.

Chu, T.M., B. Weir, and R.D. Wolfinger. 2002. A systematic statistical linear modeling approach to oligonucleotide array experiments. Math. Biosci. 176(1):35-51.

Cope, L.M., R.A. Irizarry, H.A. Jaffee, Z. Wu, and T.S. Speed. 2004. A benchmark for Affymetrix GeneChip expression measures. Bioinformatics 20(2):323-331.

Irizarry, R.A., B. Hobbs, F. Collin, Y.D. Beazer-Barclay, K.J. Antonellis, U. Scherf, and T.P. Speed. 2003. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249-264.

Li, C., and W.H. Wong. 2001. Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection. Proc. Natl. Acad. Sci. USA 98(1):31-36.

Tusher, V.G., R. Tibshirani, and G. Chu. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98(18):5116–5121.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement