On a larger scale, ubiquitous monitoring of the condition and utilization of highways could trim minutes or even hours from the travel time of responders by routing them around damaged or clogged routes. Supervisory Control and Data Acquisition systems for water, gas, and other utilities are being enhanced to provide detailed analysis of damage due to earthquakes or explosions, enabling system operators to speed restoration and minimize peripheral disruptions of service.

The benefits of comprehensive monitoring and management of engineered systems can extend beyond their own boundaries, for example managing interactions between systems, such as the power grid and the communication networks that rely on them. This underscores the importance not only of collecting system-specific data but also of normalizing and exchanging real-time assessment data between systems.

Buildings, roads, and other constructed infrastructure exhibit significant resilience and robustness in the face of disaster. However, infrastructure that appears to be intact may in fact have been severely damaged in ways that are not readily apparent. For example, in the wake of an earthquake, a building might be on the verge of collapse or a bridge might be ready to fail after even the smallest aftershock. By making hidden damage more apparent, sensors combined with information technology can enhance response and recovery operations by reducing uncertainty about the state of infrastructure.

Continuous monitoring and analysis of critical infrastructure could be done by developing new instrumentation capabilities. This would enable the routing of sensor information from buildings, bridges, and infrastructure systems—for example, roads and water, gas, sewer, communications, and power systems—to monitoring locations, providing responders with information about the robustness and safety of the infrastructure affected. As in other areas, power supply independent of the electric grid is a critical issue that must be addressed to extend sensor capabilities.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement