National Academies Press: OpenBook
« Previous: 5 Implementation Strategy for the Deployment of Millimeter-Wavelength/Terahertz Technologies for Aviation Security
Suggested Citation:"6 Conclusions and Recommendations." National Research Council. 2007. Assessment of Millimeter-Wave and Terahertz Technology for Detection and Identification of Concealed Explosives and Weapons. Washington, DC: The National Academies Press. doi: 10.17226/11826.
×

6
Conclusions and Recommendations

This chapter is a compilation of all of the conclusions and recommendations presented throughout the report.

CONCLUSIONS

  1. The technology base for millimeter-wavelength/terahertz security screening is expanding rapidly internationally, yet there is insufficient technology available to develop a system capable of identifying concealed explosives.

Suggested Citation:"6 Conclusions and Recommendations." National Research Council. 2007. Assessment of Millimeter-Wave and Terahertz Technology for Detection and Identification of Concealed Explosives and Weapons. Washington, DC: The National Academies Press. doi: 10.17226/11826.
×
  1. Millimeter-wavelength/terahertz technology has potential for contributing to overall aviation security, but its limitations need to be recognized. It will be most effective when used in conjunction with sensor technologies that provide detection capabilities in additional frequency regions.

  2. Millimeter-wavelength/terahertz technology in portal applications has been demonstrated for detecting and identifying objects concealed on people.

  3. Millimeter-wavelength/terahertz image quality raises personal privacy issues that need to be addressed.

  4. Millimeter-wavelength/terahertz technology and x-rays provide images of similar quality. However, millimeter-wavelength/terahertz energy has the safety benefit of being non-ionizing radiation, while x-rays are ionizing radiation. Millimeter-wavelength/terahertz energy cannot penetrate metal objects.

  5. Universities, national laboratories, and the commercial sector (both national and international businesses) continue to increase investment in millimeter-wavelength/terahertz technologies for security, medical, nondestructive inspection, and manufacturing quality-control applications.

  6. A decision by the Transportation Security Administration (TSA) to invest in an imaging portal depends on the potential threat posed by passengers carrying either weapons or explosives or other material. The cost of a system, the probability of detection, the false-alarm rate, and the throughput versus that of a competing x-ray system would impact the management decision.

RECOMMENDATIONS

  1. To perform an accurate assessment of the applicability of millimeter-wavelength/terahertz-based technology to explosive detection, the TSA will need to do the following: (1) decide on the range of materials to be detected, (2) assess the state of knowledge of what chemical structures and/or features of the scope of materials lend themselves to detection by millimeter-wavelength/terahertz-based spectroscopy, (3) assess the presence of these features in other common materials (such as clothing) within the range of uncertainty for such features, and (4) assess the contribution of additives to explosives to the millimeter-wavelength/terahertz signature.

  2. The TSA should examine how millimeter-wavelength/terahertz technology can be employed with other technologies to enhance the detection of weapons and explosives.

  3. The TSA should commence developmental and operational testing of millimeter-wave-based portals to assess their effectiveness and suitability.

  4. As with x-ray-based passenger imaging, the TSA needs to address issues associated with personal privacy raised by millimeter-wave/terahertz imaging.

  5. The TSA should actively pursue joint projects through agreements such as cooperative research and development agreements with industry, academia, the Department of Defense, and the national laboratories to benefit from their

Suggested Citation:"6 Conclusions and Recommendations." National Research Council. 2007. Assessment of Millimeter-Wave and Terahertz Technology for Detection and Identification of Concealed Explosives and Weapons. Washington, DC: The National Academies Press. doi: 10.17226/11826.
×

investments in millimeter-wavelength/terahertz technology and applications.

  1. The TSA should follow a two-pronged investment strategy:

    • Focus on millimeter-wave imaging as a candidate system for evaluation and deployment in the near term, and

    • Invest in research and development and track national technology developments in the terahertz region.

Suggested Citation:"6 Conclusions and Recommendations." National Research Council. 2007. Assessment of Millimeter-Wave and Terahertz Technology for Detection and Identification of Concealed Explosives and Weapons. Washington, DC: The National Academies Press. doi: 10.17226/11826.
×

This page intentionally left blank.

Suggested Citation:"6 Conclusions and Recommendations." National Research Council. 2007. Assessment of Millimeter-Wave and Terahertz Technology for Detection and Identification of Concealed Explosives and Weapons. Washington, DC: The National Academies Press. doi: 10.17226/11826.
×
Page 59
Suggested Citation:"6 Conclusions and Recommendations." National Research Council. 2007. Assessment of Millimeter-Wave and Terahertz Technology for Detection and Identification of Concealed Explosives and Weapons. Washington, DC: The National Academies Press. doi: 10.17226/11826.
×
Page 60
Suggested Citation:"6 Conclusions and Recommendations." National Research Council. 2007. Assessment of Millimeter-Wave and Terahertz Technology for Detection and Identification of Concealed Explosives and Weapons. Washington, DC: The National Academies Press. doi: 10.17226/11826.
×
Page 61
Suggested Citation:"6 Conclusions and Recommendations." National Research Council. 2007. Assessment of Millimeter-Wave and Terahertz Technology for Detection and Identification of Concealed Explosives and Weapons. Washington, DC: The National Academies Press. doi: 10.17226/11826.
×
Page 62
Next: Appendix A: Acronyms »
Assessment of Millimeter-Wave and Terahertz Technology for Detection and Identification of Concealed Explosives and Weapons Get This Book
×
Buy Paperback | $29.00 Buy Ebook | $23.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The security of the U.S. commercial aviation system has been a growing concern since the 1970's when the hijacking of aircraft became a serious problem. Over that period, federal aviation officials have been searching for more effective ways for non-invasive screening of passengers, luggage, and cargo to detect concealed explosives and weapons. To assist in this effort, the Transportation Security Administration (TSA) asked the NRC for a study of emerging screening technologies. This report--the third of four--focuses on currently maturing millimeter-wavelength/terahertz imaging and spectroscopy technologies that offer promise in meeting aviation security requirements. The report provides a description of the basic operation of these imaging systems, an assessment of their component technologies, an analysis of various system concepts, and an implementation strategy for deployment of millimeter-wavelength/terahertz technology screening systems.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!