National Academies Press: OpenBook
« Previous: 1 Overview
Suggested Citation:"2 Current Status." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×

2
Current Status

In this session three main speakers and a panel of additional speakers were asked to provide an overview of the current status of green chemistry and engineering education by addressing how green chemistry and engineering bring value to the chemistry and chemical engineering curricula and to consider why some educators choose to incorporate or not incorporate green chemistry and engineering educational principles into their teachings.

MAIN SPEAKERS

The first speaker, Dr. David Allen (director, Center for Energy and Environmental Resources, University of Texas, Austin), gave a presentation titled “Green Engineering: Environmentally Conscious Design.” He described the framework used at his center as an example of the current status of green engineering. This framework incorporates green concepts into chemical engineering and other initiatives to reformulate the engineering curriculum.

According to Allen, the evolution of green engineering began 20 years ago when the chemical engineering community began exploring waste minimization. In the late 1980s and early 1990s there was a considerable amount of commitment to bringing the concepts of waste reduction into the design of chemical processes and chemical products. The idea of waste reduction eventually evolved into pollution prevention. In the mid-1990s a series of textbooks and course modules on pollution prevention began appearing. In 2000 the U.S. Environmental Protection Agency, Allen, and some of his colleagues established a partnership to develop green engineering materials specifically for the chemical engineering curriculum. Allen stated that the current and future education focus should progress from greening the chemical engineering curriculum to incorporating some green concepts into other engineering disciplines.

Allen went on to identify two tools he uses when teaching green engineering: (1) assessment and (2) improvement. He uses assessment tools to determine what constitutes a green product or process and improvement tools to answer the questions, “Will new engineering design tools be necessary, or will our existing tools that allow us to minimize mass and energy consumption be sufficient?”1 Allen said that it is possible to apply assessment to a variety of design stages and scales (i.e., molecular, process, and system scales), but that determining whether a process or product is green through assessment is not as simple as it might seem. The potential environmental impacts are considered when completing an assessment of a particular chemical process or product. However, comparing one product or process with another is difficult because most products and processes have unique fingerprints.

To emphasize the complexity of making such assessments, Allen provided the audience with a typical chemical engineering problem given to undergraduate students: “You have a vent stream that contains, in this case, two compounds, say toluene and ethyl acetate. You don’t want to emit this to the atmosphere. So, you are going to use an absorbing column. That absorbing column contacts your gas vent stream with absorbing oil, captures those emissions, or at least some fraction of those emissions. Then you would send the material that has been absorbed in this absorbing column to a distillation column. You recover the materials that you have absorbed, and you recycle the oil back to the absorption column, a very simple chemical engineering process, junior level material.” According to Allen, the problem

1

Allen, D., and D. Shonnard. 2001. Green engineering: Environmentally conscious design of chemical processes and products. AICHE Journal 47(9):1906-1910.

Suggested Citation:"2 Current Status." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×

with this approach to capturing emissions from the chemical process is that a large amount of energy is expended. It is possible that there is another process that does not expend as much energy, but it may have some other adverse effect. Carrying out an assessment of a chemical process or product may give an ambiguous result such as in the example provided, but at the very least an assessment can help identify the potential limitations of the process. Allen said that he also provides his students with screening metrics to complete an assessment of such items as environmental impacts, costs, and sustainability metrics.

Deciding where improvements for products or processes can be made requires the consideration of whether new engineering design tools are necessary or whether existing tools that allow us to minimize mass and energy consumption are sufficient. According to Allen, most improvement for traditional systems is achieved through the use of conventional tools of process design, but the examination of new systems will require the development of new tools for improvement. Some new tools of improvement for integrating material and energy flows across industrial sectors include sustainable technologies, mass-energy balances, life-cycle assessments, and national scale material and energy flows.

In closing, Allen highlighted some specific tools “designed to dovetail with the fundamental reform that is occurring in chemical engineering education.” These tools should be actively disseminated throughout the scientific community. He said that the Massachusetts Institute of Technology is leading the advancement of undergraduate chemical engineering curriculum2 through the discipline-wide initiative Frontiers in Chemical Engineering Education. According to Allen, the initiative is exploring the extension of several basic themes in collaboration with other branches of engineering and other audiences: (1) the focus of chemical engineers in the future, (2) multiscale engineering, (3) molecular transformations, and (4) sustainable systems engineering.

The second speaker in this session was Dr. James Hutchison, professor of chemistry and director of the Materials Science Institute at the University of Oregon, who described his green organic chemistry laboratory course. His presentation was titled “Green Chemistry Education Status: Lessons from the Organic Chemistry Laboratory Experience.” Hutchison explained that his goal at his institution is to accomplish “broad implementation of green chemistry in the curriculum both at the undergraduate and graduate level,” and his course is just one step toward achieving this goal. Over the course of teaching this laboratory series, Hutchison developed a student laboratory manual, “Green Organic Chemistry: Strategies, Tools, and Laboratory Experiments.”3 Using this manual, students perform green chemistry experiments and learn 19 concepts. Topics in the manual include:

  • Identification of chemical hazards;

  • Chemical exposure and environmental contamination;

  • Evaluation of chemical hazards;

  • Introduction to green chemistry;

  • Alternative solvents;

  • Alternative reagents;

  • Reaction design and efficiency; and

  • Alternative feedstocks and products.

For example, in the development of the experiments to find greener alternatives, Hutchison includes molecular assessment to observe potential hazards or inefficiencies and to find and test alternatives. Hutchison has found that this process teaches students how to develop greener laboratory experiments while performing them (see Figure 2.1).

Hutchison identified several challenges in implementing green chemistry in an already crowded curriculum. Three of the challenges are: (1) developing new experiments that illustrate green chemistry concepts and are effective in teaching labs; (2) developing state-of-art concepts that also integrate essential chemistry concepts with green chemistry; and (3) providing a flexible option for integrating green chemistry into the existing curricular framework. In an effort to address these challenges Hutchison suggested that the quality of teaching be ensured by thorough testing, a wide range of choices in the curricular framework, and replacing old material with new material.

Integrating green chemistry into the organic laboratory at the University of Oregon revealed several incentives for implementing the greener alternatives. First, the amount of waste generated from experiments has significantly decreased. Second, university and community public relations are improved. The University of Oregon’s green chemistry program has generated 25 globally published journal articles. The green chemistry program has also enhanced student recruiting at both the undergraduate and graduate levels. Third, the classes were an opportunity to upgrade curricula and facilities. Because the green experiments do not require fume hoods, the laboratory atmosphere can be designed to be more inviting to students and provide a better view of the entire laboratory environment. Such improvements in the teaching environment are particularly attractive to a school with older facilities (e.g., a community college with a 40-year-old laboratory that may have inadequate ventilation). Fourth, increased safety, decreased liability, and reduced energy costs are all major incentives to implementing green chemistry into a curriculum.

The final main speaker in this session was Dr. Steven Howdle, the chair of chemistry at the School of Chemistry at the University of Nottingham. Howdle discussed the divide between chemistry and chemical engineering in his presentation titled “Mind the Gap: Bridging the Divide Between Chemistry and Engineering.” Howdle explained how he developed the Green Chemistry for Process Engineering program as a new undergraduate degree at the University of Nottingham. The program has been running for four years. The program brings modules from chemistry and chemical engineering together to train

2

http://mit.edu/che-curriculum.

3

Doxsee, K., and J. Hutchinson. 2004. Green Organic Chemistry: Strategies, Tools, and Laboratory Experiments. 1st ed. Florence, KY: Brooks/Cole.

Suggested Citation:"2 Current Status." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×

undergraduates in aspects of chemistry and chemical engineering. According to Howdle, the first year has a module that presents “hot” green topics and serves as a way to explain why the classes are important beyond the classroom to any student, not just chemists. In addition to chemists, students from other majors (e.g., music, English) are taking the module, which is now the most popular module on the campus at Nottingham. The chemical engineers, however, cannot fit the class into their densely packed program.

Although his course is very popular now, Howdle pointed out that the overall program has not been overwhelmingly successful in that “only two students per year for the last four years have signed up full-time for the course.” Despite this unpleasant result, however, he said that other universities are following the example of this program by developing courses to bring chemistry and chemical engineering together.

PANEL SPEAKERS

While most of the speakers in this session were experienced professors and career professionals, Dr. Amy Cannon, a recent graduate of the Green Chemistry Ph.D. Program at the University of Massachusetts (UMASS), provided a different point of view. Cannon is the first graduate of the “the world’s first green chemistry Ph.D. program” at UMASS Boston. This program was started in 2001 and currently has 15 students. In addition to core chemistry courses, the program requires courses in toxicology and risk assessment, environmental fate and transport, environmental economics, and environmentally benign synthesis. In addition, students are required to defend three independent research proposals to a committee.

Cannon discussed her experience entering the workforce as a new graduate in green chemistry. She is employed by Rohm and Haas’s Electronic Materials Division and designs waveguide materials for optical electronic devices. Cannon also teaches the Introduction to Green Chemistry course at UMASS Lowell and an undergraduate and online course at UMASS Boston.

Dr. Berkeley Cue, a retired pharmaceutical executive and Green Chemistry Governing Board member, was able to provide another dimension to the current status of green chemistry education. In his talk titled “What Industry Can Do to Encourage Green Chemistry Education: A Pfizer Case Study” Cue indicated that industry is interested in promoting green chemistry because industry now recognizes its social responsibility to the community.4 Cue described Pfizer’s development of the Pfizer Groton Labs Green Chemistry Workshop. In the workshop, 25 to 30 students, both undergraduates and graduates, are invited to the Groton Labs where they are introduced to the pharmaceutical industry and learn how pharmaceutical research and development is performed.

Pfizer also has a few programs targeted at middle school students. Green Chemistry and Environmental Sustainability provides a 10-day module that contains exercises, readings, as well as experiments in science, math, language and arts, and social studies. The program has been mapped to national education standards. There is currently a 10-school pilot program in southeast Connecticut, and Pfizer expects a national rollout near Pfizer research sites in 2006. Samjam, a science and math jamboree, and Smart Science and Math are two more programs for middle school students sponsored by Pfizer. More than 3,000 students a year participate in the Samjam modules, and more than 200 Pfizer employees take time out to produce and run experiments for middle school students.

Cue highlighted other current green chemistry efforts, such as the elementary school-level coloring book “Pollution Solution: A Green Chemistry Story.” The coloring book was developed by a group of organic chemistry students at Suffolk University and was based on SEA-NINE 211™, a compound that received the 1996 Green Chemistry Award.5 Other notable green chemistry efforts are the ACS Green Chemistry Summer School program at McGill University and Pfizer’s internal award recognition program.

Cue closed with an action item for industry: “In every job advertisement for chemists and chemical engineers, add one sentence: A knowledge of green chemistry (or green engineering) is desirable. If the students respond to our challenge to learn green chemistry, industry has to respond by hiring them.”

Dr. Kenneth Doxsee (National Science Foundation and the University of Oregon) discussed the current existence of green chemistry education in educational institutions. Doxsee highlighted “green islands,” which are “relatively small pockets of activity in green chemistry education.” These islands are Carnegie Mellon University, Gordon College, Hendrix College, University of Massachusetts, University of Oregon, University of Pittsburgh, and University of Scranton. Doxsee indicated that the connections between these islands are very important, but it is even more important to expand green chemistry into more research extensive universities 1 (R1).6

Doxsee described how the University of Oregon hosts a Green Chemistry Education Workshop7 that focuses on implementing green chemistry into organic chemistry cur-

4

Rottas, M., M. Kirchoff, and K. Parent. 2004. Pfizer works with future scientists to promote environmentally responsible science. inChemistry Magazine. 13(4):17.

5

Rohm and Haas was recognized for its development of SEA-NINE®211 antifouling agent, an effective and more environmentally acceptable ingredient for use in marine antifouling paints, compared with many currently used biocides.

6

The term “R1” is used in the United States to describe Research Extensive Universities 1.’R1s offer a full range of baccalaureate programs with research having a high priority. There are currently 88 public and private universities classified as R1s.

7

http://chemistry.gsu.edu/CWCS/green.php.

Suggested Citation:"2 Current Status." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×

riculum. At the University of Oregon workshop, faculty members try new experiments, learn approaches to incorporate green chemistry into their curriculum, and network with other educators. This workshop is jointly sponsored by the University of Oregon, National Science Foundation (NSF), and the NSF-sponsored Center for Workshops in the Chemical Sciences. According to Doxsee, the University of Oregon has been hosting this workshop for five years with the sixth year in summer 2006. He said that there is a tremendous amount of interest from community colleges, high schools, and four-year teaching colleges, but the workshop lacks representation from R1 institutions, the top funded major research institutions in the country.

Doxsee shared his interest in getting the R1 institutions to buy into green chemistry for several reasons. First, acceptance by R1 institutions may increase acceptance in the broader education community. Second, major institutions train a large number of students. Third, they provide a considerable amount of intellectual capital to major industrial employers. Fourth, R1 schools are training the next generation of faculty. According to Doxsee, the lack of attendees from R1 institutions at the organic chemistry laboratory workshops is due to their attitude toward green chemistry. He believes that there is a reluctance to move away from the traditional method of teaching at R1 institutions. Doxsee also believes R1 institutions may feel they do not need any help with green chemistry implementation and concepts, they are just not interested in green chemistry, or think that green chemistry is a bad idea.

Despite the reluctance at many R1 institutions, Doxsee pointed out signs of hope in gaining support from some R1 institutions. The support includes representation of R1 schools, such as MIT and Cornell, at this workshop; research endeavors in graduate programs at research intensive university graduate programs; and international workshops that provide a platform to introduce new educational materials to educators where high levels of R1 representation are common. Doxsee pointed out that although these endeavors are positive, because of their rarity, they do not make as much of an impact.

In addition to highlighting the University of Oregon’s organic chemistry laboratory and the supplementary laboratory manual, Doxsee mentioned a German-authored textbook that will also be published in English, titled Chemistry Experimentation for All Ages.8 The textbook focuses heavily on microscale chemistry and has at least one chapter that discusses green chemistry. The book targets students at elementary levels, including kindergarten, through high school. In advance of publication the German editor has already introduced the book to high school students in Germany.

In closing, Doxsee emphasized that green “educational needs go beyond our undergraduates and beyond the K-12 level. We need to educate industry; we need to educate our colleagues.”

The final panel speaker of this session, Dr. Tyler McQuade, from Cornell University, described a different method of green education. He has a program that encourages postgraduates to focus on the business side of green chemistry and engineering with the goal of developing and educating green entrepreneurs and innovators. His group at Cornell, which is a combination of chemistry, biology, and materials science engineering, works on innovations in industry using the field of green chemistry. McQuade highlighted the many different topics his group covers, which include:

  • Commerce issues;

  • Patenting;

  • Interactions with industry;

  • Business idea competition;

  • Interactions with business schools;

  • Interaction with campus entrepreneur organizations; and

  • Reaction efficiency with technologies, such as telescoping.

BREAKOUT SESSIONS

On the second day of the workshop, planned breakout sessions began that allowed participants to delve deeper into the issues surrounding green chemistry and engineering. Workshop participants were pre-assigned to breakout groups and the results of those breakout sessions that correspond with the current status of green chemistry and engineering education are listed below.

Green Chemistry and Green Engineering and the New Faculty

During this breakout session, participants discussed faculty efforts to implement green principles. Participants felt that existing faculty members view new faculty who bring green concepts into the curriculum either favorably or with ambivalence. The ambivalence stems from concerns about the rigor of research despite the use of green principles. Because the new faculty’s green efforts are commonly not recognized one way or the other, those who do try to incorporate green principles are not sure what type of impact they are making on the department. On the other hand, green principles are seen as a positive addition in cases where new students are attracted to the institution or a school is recognized due to green chemistry or engineering.

The breakout group participants also discussed the impact of teaching green principles on the tenure process. Some believed teaching or incorporating green chemistry and en-

8

Schwarz, P., M. Hugerat, and M. Livneh. 2006. Chemistry Experimentation for All Ages. Arab Academic College for Education in Israel: Haifa, Israel.

Suggested Citation:"2 Current Status." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×

gineering into the curricula helps graduates in their future careers and can also help in acquiring research funding.

A summary of key roadblocks for new or tenured faculty trying to adopt green chemistry and engineering include traditionalists, lack of guidance or mission statement from professional society, lack of funding, and lack of publication in top journals. Addressing these roadblocks, collaborating with green chemists and engineers at other institutions, and developing a Green Chemistry Institute workshop for new faculty may provide inspiration and therefore encourage new faculty to incorporate green chemistry and engineering concepts into their curricula.

Green Chemistry and Green Engineering Industry and Education

Industry views green chemistry and engineering in different ways. Green thinking could potentially be a successful business investment. Creating a new product that can be sold at a higher price, because it has a more intricate development process that requires a higher level of expertise or can be marketed as being green, and decreases waste is favorable for the chemical industry’s reputation and profit margin. Green thinking could also be added to the industry’s current sustainable development efforts. On the other hand, green chemistry and engineering could lead to the development of new regulations or be seen as alternative forms of environmental chemistry or sanitary engineering, both of which some companies view as energy intensive efforts without many positive benefits.

Participants had varying answers to the question, “Are green chemistry and engineering practitioners readily finding employment?” Some participants believed that more green chemistry graduates would propel the industry to seek out this expertise. Some participants, however, believed that green chemistry and engineering practitioners are not finding employment because large companies can depend on smaller companies to provide green expertise on an ad hoc basis. The cost is probably much less than directly hiring green chemists or engineers as full-time staff because the company must provide a competitive salary and benefits. It is important to note that the definition of a green chemist or engineer is still a gray area; some scientists practice green chemistry or engineering but do not label themselves as green chemists or engineers.

Industry and academia are promoting green chemistry and engineering to make their respective organizations more competitive. Industry is greening R&D programs, while academia is developing green chemistry and engineering programs.

The participants identified the following actions that may aid in addressing issues related to green chemistry and engineering in industry and academia:

  • The federal government and nonprofit organizations could promote green principles to the general public in two ways: (1) through entertainment and educational events, and (2) by teaching green chemistry and engineering to young children, to potentially influence the next generation to carry green chemistry and engineering into the future.

  • Professional societies could provide more funding and create more interest through promotion, for example, at professional society meetings and conferences or through society-sponsored journals, to place more emphasis on green chemistry and engineering.

Suggested Citation:"2 Current Status." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×
Page 3
Suggested Citation:"2 Current Status." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×
Page 4
Suggested Citation:"2 Current Status." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×
Page 5
Suggested Citation:"2 Current Status." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×
Page 6
Suggested Citation:"2 Current Status." National Research Council. 2007. Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. Washington, DC: The National Academies Press. doi: 10.17226/11843.
×
Page 7
Next: 3 Tools and Materials »
Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable Get This Book
×
 Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable
Buy Paperback | $29.00 Buy Ebook | $23.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!