Brief Description

Synthesis and Assessment Products by the U.S. Climate Change Science Program (CCSP)

The 21 assessment products were designed to address the mandate of the Global Change Research Act, by considering science and policy issues spanning the range of topics addressed by the CCSP. The first product, on temperature trends in the lower atmosphere, was released in April 2006 (CCSP 2006).

that is essential in comparative case analysis. Of the eight assessments examined as case studies, the committee selected two of the examples—the National Assessment of Climate Change Impacts (NACCI) and the CCSP Synthesis and Assessment Products—because they are the assessment efforts of the agencies of the U.S. federal government sponsoring this report. The NACCI is an interesting example of a large-scale assessment based largely on regional and sectoral analyses, as well as an interesting experiment in stakeholder participation and multisponsor coordination. Because most of the CCSP Synthesis and Assessment Products are still under way, that assessment effort is considered last, as a “work in progress.” The the Stratospheric Ozone Assessments, Intergovernmental Panel on Climate Change (IPCC) assessments, Global Biodiversity Assessment (GBA), and the Millennium Ecosystem Assessment (MA) were selected because they are the largest and best known global assessment efforts and thus provide the most extensive experiential base from which to learn. The committee also examined the recent Artic Climate Impact Assessment (ACIA) because it was a regional rather than a global assessment (albeit for a large, international region), and because it attempted to learn from the other cases examined here and deployed some innovative procedures based on that learning. The German Enquete Kommission was included because it provides a different model for linking science and decision makers than any of the other assessments, and thus provides a point of comparison on that critical issue.


Concerns about anthropogenic destruction of stratospheric ozone first appeared in the 1960s, initially based on emissions of nitrogen oxides and hydrogen oxides from aviation, bombs, and rockets. Subsequently, ozone loss caused by chlorofluorocarbons (CFCs) was first proposed by Molina and Rowland (1974). Early research validated the key qualitative points in their hypothesis, but more authoritative and quantitative resolution required large research advances in reaction kinetics, atmospheric trace-gas measure-

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement