INTRODUCTION

Most of Africa’s edible native fruits are wild. One compilation lists over 1000 different species from 85 botanical families and even that assessment is probably incomplete.1 Among all those fruit-bearing plants, many of the individual specimens growing within Africa are sheltered and protected, some are even carefully tended, but few have been selected to bring out their best qualities, let alone deliberately cultivated or maintained through generations. They remain untamed.

Despite the vastness of the resource, wild fruits are rarely included in development activities. At most, they get only sketchy horticultural attention; seldom, if ever, are any grown in organized plantings. Indeed, apart from listings in the tomes of taxonomy, Africa’s wild-fruit wealth is essentially unknown to science.

For all the lack of research, wild fruits still play a crucial role in Africa’s rural areas, yielding the very young a key link that helps a fragile nutritional chain from parting. This is because, unlike most grains and vegetables, fruits generally do not need cooking and—requiring no adult intervention and being tasty to boot—they are sought out especially by children. This is important because children are malnutrition’s greatest victims.

In this sense, these wild fruits are Africa’s most nutritionally important resource, critical to everyone during their founding years. Gathering fruit has been a routine of growing up throughout the millennia of our existence. In rural areas everywhere on earth, wild fruits contribute to nutrition and health during the most vulnerable period of human life. During the crucial years when young bodies and brains are developing, wild fruits can provide the vital nutrition.

In addition, scavenging for fruits is exceptionally important to youngsters in the many cultures that prepare meals fewer than three times a day. Often, adults have neither time nor means to prepare supplementary snacks, so youngsters, whose small stomachs can barely hold enough to sustain their daily needs, rely on the fruits of the field, woodland, wetlands, forest, savanna, or hillside to fill the voids and carry them through. The amounts consumed may rarely have been large. But even a few small fruits that are nutritionally dense can deliver big benefits when the rest of the diet is deficient in vitamins and minerals, which is especially the case when it is overly dependent on starchy staples.

1

See Martin, F.W., C.W. Campbell, and R.M. Ruberté. 1987. Perennial Edible Fruits of the Tropics. Handbook No. 642. U.S. Department of Agriculture.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 185
INTRODUCTION Most of Africa’s edible native fruits are wild. One compilation lists over 1000 different species from 85 botanical families and even that assessment is probably incomplete.1 Among all those fruit-bearing plants, many of the individual specimens growing within Africa are sheltered and protected, some are even carefully tended, but few have been selected to bring out their best qualities, let alone deliberately cultivated or maintained through generations. They remain untamed. Despite the vastness of the resource, wild fruits are rarely included in development activities. At most, they get only sketchy horticultural attention; seldom, if ever, are any grown in organized plantings. Indeed, apart from listings in the tomes of taxonomy, Africa’s wild-fruit wealth is essentially unknown to science. For all the lack of research, wild fruits still play a crucial role in Africa’s rural areas, yielding the very young a key link that helps a fragile nutritional chain from parting. This is because, unlike most grains and vegetables, fruits generally do not need cooking and—requiring no adult intervention and being tasty to boot—they are sought out especially by children. This is important because children are malnutrition’s greatest victims. In this sense, these wild fruits are Africa’s most nutritionally important resource, critical to everyone during their founding years. Gathering fruit has been a routine of growing up throughout the millennia of our existence. In rural areas everywhere on earth, wild fruits contribute to nutrition and health during the most vulnerable period of human life. During the crucial years when young bodies and brains are developing, wild fruits can provide the vital nutrition. In addition, scavenging for fruits is exceptionally important to youngsters in the many cultures that prepare meals fewer than three times a day. Often, adults have neither time nor means to prepare supplementary snacks, so youngsters, whose small stomachs can barely hold enough to sustain their daily needs, rely on the fruits of the field, woodland, wetlands, forest, savanna, or hillside to fill the voids and carry them through. The amounts consumed may rarely have been large. But even a few small fruits that are nutritionally dense can deliver big benefits when the rest of the diet is deficient in vitamins and minerals, which is especially the case when it is overly dependent on starchy staples. 1 See Martin, F.W., C.W. Campbell, and R.M. Ruberté. 1987. Perennial Edible Fruits of the Tropics. Handbook No. 642. U.S. Department of Agriculture. 185

OCR for page 185
LOST CROPS OF AFRICA 186 Although nowadays such childhood experiences may seem old-fashioned in cities worldwide, they still pertain in vast rural areas of Africa. A surprising number of wild fruits contribute to countryside nutrition, and also to commerce, as seen in local markets. In Swaziland, for example, surveys found that people eat products from more than 220 species of wild plants; about half fruits.2 A similar audit in Cameroon identified over 300 trees whose fruits or seeds were eaten, including 200 forest species.3 In Uganda 105 wild fruits are recorded as still being used.4 Similar inventories are documented in enough places to make this a fair reflection of the norm. Today, however, these wild resources are getting harder to find. Rummaging through the bush around a village may still be important but, taken all round, wild fruits are a vanishing breed. And no one is doing much to counter the trend because today’s overwhelming emphasis is on domesticated crops, especially staples. That choice is certainly understandable, but more thought needs to be given to fostering wild fruits and restoring their productive contributions to Africa. This added priority is needed because times are rapidly changing. In the past, rural communities living near wild growth didn’t need to consider propagating these trees; nature satisfied their needs. Yet with dwindling tree cover, the useful species must be brought in from the wild or risk being lost entirely. Arguably, wild fruits comprise Africa’s most vulnerable food resource sector and, because of the pre-existing condition of scientific neglect, their shaky status will only worsen unless there is incisive intervention. Nudging nature even a little is often enough to tilt the balance in favor of a wild fruit establishing or persisting in lieu of scrub; research and its application can work wonders. This is why we devote the second half of this volume to the topic. What could be done to rescue such historically vital contributors from neglect and possible extinction? First and foremost, wild fruits can be rescued from the widespread belief that they represent backwardness—that in a modern society, foraging is demeaning. Certainly, wild fruits are typically smaller, the pits larger, and the flavor more varied than in comparable cultivated fruits, but that does not mean they are unworthy. Publicity and education are needed to quash the common impression that wayside fruits are “simple,” “substandard,” “unfashionable” fare. 2 When the survey was made (at the beginning of the agricultural season, a time when food stores often are low) more than 50 species were contributing to the local diet each day. Antonsson-Ogle, B. 1990. Dietary use of wild plant resources in rural Switzerland. Pp. 895-910 in Proceedings of the Twelfth Plenary Meeting of AETFAT, Symposium VIII. Mitt. Inst. Allg. Bot., Hamburg. 3 Information from J. Vivien and J.J. Faure of Cameroon's Centre Universitaire de Dschang, which has established a native fruit tree arboretum containing 60 species. 4 Goode, P.M. 1989. Edible Plants of Uganda: The Value of Wild and Cultivated Plants as Food. Food and Nutrition Paper 42/1, FAO, Rome.

OCR for page 185
INTRODUCTION 187 Wild fruits also need rescuing from the notion that they are solely for the young or that it is degrading to eat such things. Such attitudes ignore the nutritious resources that are on hand. Ironically, this is an era in which nations almost everywhere are exhorting their citizenry to eat more fruits— the wilder the better it seems. In market economies especially, consumers can have a large influence on what is being studied and sold. Everyday, Africans can also call for emphasis on their popular preferences, many of which are not the fruits of urban life and mass cultivation. That, in turn, may bring support and attention to fruits such as those described here. Technical interest and professional support for wild fruits are also crucial. Currently, textbooks, the international literature, and foreign advisors rarely mention, let alone promote, resources with names as strange as aizen, icacina, or imbe. As noted, nearly all activities in African agriculture emphasize the top international crops whose qualities are beyond question. While the focus on staples and markets and exports is right and proper, quality remains as desirable in eating as in other spheres of human enterprise. And fruits contribute most to the quality of eating. And of course, their nutrients—notably vitamins—act catalytically in tiny amounts to help the body employ the bulky staple foods most efficiently and effectively. From development banks and funding agencies to the peer-reviewers who judge research proposals, decision-makers can open their eyes to the African bounty that nourished people long before wheat, rice, soybean, maize, mango, or avocado were seen by human eyes. The importance of the wild-fruit resource can be incorporated not only into public perceptions but also into landuse. The disappearance of wild fruits is partly due to the destruction of their habitat. Under the pressure of population or politics or profit, the groves of good nutrition near villages and towns get cut or burned or drained or contaminated by waste. To this extent, the deficiency in childhood nutrition is homegrown, and the value lost is as much to people as to the environment. In short, the underexploited fruits—the truly “lost” fruits—described in the following chapters can contribute much more to Africa than they do today. Indeed, as the rest of this section indicates, many might well come to prominence. First, they taste good and add variety for the palate. A key advantage is, of course, adaptability to Africa’s climates and conditions. Another advantage is that the plants are already spread across the African continent and are well known to many users, especially those among the destitute, who employ them to add culinary variety, flavor, nutrients, and sometimes even substantial energy to diets derived from bland staples. Some are even used as sources of water.5 5 It is little-recognized that wild fruits quench thirst safely. Filled with pure water, they contributed to public health long before the concept of Public Health was recognized. Wild watermelons and several other African fruits are even today more appreciated for moisture than for nourishment.

OCR for page 185
LOST CROPS OF AFRICA 188 The following 14 chapters highlight a small selection of wild fruits that appear capable of contributing broadly to Africa’s future well-being. Their individual potentials are also summarized immediately below. As with the species treated earlier, these have been chosen from the recommendations of hundreds of researchers who participated in the first phase of this multi-part investigation of Africa’s promising indigenous food plants. It should be understood that these 14 are representative of the wealth to be found among Africa’s untamed fruit resources. They are not the only examples, nor perhaps even the best for any given location. Other species should thus not be judged inferior just because they received no mention in these pages. All in all, the fruits described below offer just a sampling of available and practical tools for working on chronic problems such as malnutrition, food insecurity, rural decline, and environmental destruction. They should be brought in from the wild.

OCR for page 185
INTRODUCTION 189 SUMMARIES OF INDIVIDUAL SPECIES Following are short summaries of 14 promising wild fruits selected for treatment in the second half of this volume. Following these summaries are targeted discussions of their potential for meeting development challenges in Africa. Table 2 (page 194) summarizes their potential across Africa. This summary information is also found in the detailed chapters dealing with individual crops. 1. Aizen (Mukheit) The aizen or mukheit (Boscia senegalensis, Capparaceae) occurs in a vast swath across the top of sub-Saharan Africa, from Somalia in the east to Mauritania in the west. Usually a scrawny shrub, it occupies some of the hottest and driest locations faced by plant life. Yet aizen not only survives, it also yields an array of useful products—enough indeed to sustain human life almost by itself. In at least a dozen countries, people at times virtually live off aizen’s fruits, seeds, roots, and leaves. Although not unpleasant to eat, the fruits are most notable for being available when little else remotely edible is to be found. In addition, the seeds extracted from within those fruits are cooked and dried, and become such common dietary items that they have been described as desert dwellers’ staples. Climate Arid. 2. Chocolate Berries Several of the nearly 70 Vitex species (Labiatae) found scattered across tropical Africa produce fruits of local importance. These small and rugged trees are quintessential wild food resources. In season, they become bespangled by an abundance of blackish fruits, which passersby eagerly gather up. The reason? Although the uninitiated may disdain the pungent scent and stained lips, almost everyone loves the “chocolate” flavor. Climate Tropical. 3. Custard Apples The plant-family botanists call Annonaceae produces fruits crammed with a sweet pulp with a custard-like texture. These tropical delights are sold the world around under names such as “custard apple,” “cherimoya,” or “sops” of various vintage. They are already among the most beloved fruits in tropical Asia and America, but so far the African members have been neglected and are poorly understood even within their natural habitats. What might be called “the lost sops” deserve further development, not to mention protection from disappearance. One, the African custard apple, has been called “the best indigenous fruit in most parts of tropical Africa.” Another,

OCR for page 185
LOST CROPS OF AFRICA 190 the junglesop, produces probably the family’s biggest fruits—as long as a forearm and as thick as a thigh. A third—perhaps the strangest of all— ”hangs like a bunch of sausages,” each fruit a separate bright-scarlet link. Climate Tropical. 4. Ebony The jet-black, rock-hard heartwood known as ebony is perhaps the smoothest, shiniest, and most beautiful of all the woods; renowned worldwide for expensive carvings, it is regarded as almost a precious material, and can sell by the gram. But Diospyros, the name of these trees’ genus, actually means “fruit of the gods,” and outside the tropics ebony species are most renowned for the persimmon. In their domicile in the wild, African members of the Family Ebenaceae also produce widely enjoyed fruits. And they could be much more widely enjoyed. The fruits have advantages: They are suitably sized for marketing on a large scale, attractive to look at, and appealingly succulent and sweet. They are, however, very soft and delicate. This fragility is at present the biggest—perhaps the only— barrier to ebony fruits becoming a valuable, everyday, Africa-wide food. Climate Mostly tropical. 5. Gingerbread Plums Within virtually the whole of sub-Saharan Africa—the vast stretch of territory between Senegal and Madagascar—there exist a number of interrelated wild fruits (Parinari and kindred genera of the Family Chrysobalanaceae) with agreeable strawberry-like flavors. These so-called gingerbread plums can have a texture firm enough to crunch like a crisp apple. Usually red or yellow in color, these plum-sized delicacies lack the sourness typical of wild fruits (and of true plums, for that matter). Millions of aficionados, notably children, love their crunchy sugariness, and consume them in quantity. Climate Moist tropical and subtropical. 6. Gumvines Some of the roughly 17 Landolphia species (Family Apocynaceae), occurring mainly in West and Central Africa, bear masses of fruits that make tasty morsels. These “gumvine fruits” or “rubber fruits” look somewhat like apricots, with tough skins that are red, yellow, or orange in color. The plants themselves are common and are obviously at home in the African environment. They are forest lianas and sprawly shrubs nowadays admired for their jasmine-scented flowers as much as for their plentiful fruits or the latex-filled stems that once provided Europe and other parts of the world with much of their rubber. Climate Tropical savannas and forests.

OCR for page 185
INTRODUCTION 191 7. Icacina Icacina (Icacina oliviformis, Icacinaceae) is a small, drought-resistant shrub forming dense stands in the West African and Central African woodlands and plains. Although the species is truly wild, several million people rely at various seasons upon its separate products: fruits, seeds, and tuberous roots. The fruits are usually consumed fresh. Bright red and plum- like, they have a sweet and pleasant flavor. The plants grow so densely and yield so exuberantly that during the season a family can reportedly collect hundreds of kilos of fruits a day, even from untended wild stands. The small, round seeds from the center of the fruits are also edible. And the huge edible roots are so much like a much better known staple that their common name in English is “false yam.” Climate Moist and seasonally dry tropics. 8. Imbe Food and travel writers commonly elevate Asia’s mangosteen into the lofty level of “world’s most delicious fruit.” However, the plant producing it happens to be only one of 400 Garcinia species found across Asia and Africa. Africa’s best-known member is the imbe (Garcinia livingstonei, Guttiferae), a crooked tree whose soft and colorful fruits brighten up markets from Senegal to South Africa. This small, orange-colored delight provides a juicy pulp that has a pleasantly sweet-to-acid flavor. East Africans have dubbed it “King of Fruits.” Even those specimens that are unusually sour prove notably appealing on a hot afternoon. Climate Moist tropics and wooded plains. 9. Medlars In East, Central, and southern Africa at least eight species of Vangueria (Family Rubiaceae) commonly grow with surprising vigor in dry, eroded, infertile, leached, or otherwise challenging sites. These trees closely resemble one another in both appearance and a propensity to bear lots of fruits. For want of any popular name in English, they are called wild medlars or African medlars. The fruits dry easily (even drying out before they are picked), after which they take on the aroma and flavor of dried apples. Reconstituted with water and a little sugar, they substitute for applesauce as well as being used as fillings in puddings and many more culinary products. Climate Woodlands, scrub, valleys, stony hillocks, or sandy dunes. 10. Monkey Oranges Three monkey oranges (Strychnos cocculoides, S. spinosa, and S. pungens, Strychnaceae) produce fruits that are large, flavorful, easy to

OCR for page 185
LOST CROPS OF AFRICA 192 handle, and often desperately difficult to find due to overwhelming demand. Farmers appreciate the trees so much that when clearing land they spare the ax—even when that will hinder their subsequent field operations. Of all Africa’s wild fruit trees, these are the most “conventional” in appearance and usage. They are similar in size and shape to apple, pear, and orange trees. Given horticultural attention, monkey oranges probably can be raised with equal facility. Already, they bear their fruits in abundance. Climate Savannas and dry woodlands. 11. Star Apples In many tropical American countries, especially in the Caribbean, the star apple (Chrysophyllum cainito) is a common dooryard tree whose apple-sized delights provide a sweet flesh with small seeds arranged in a star pattern. What is not well known is that the area below the Sahara contains more than a dozen related species. These attractive trees of the genus Chrysophyllum and Bequaertiodendron (Family Sapotaceae) create their own edible counterparts whose smooth green, purple, apricot, yellow, or copper-colored skin encloses a white, sweet, tasty pulp. This pulp is arranged in segments and, when cut transversely, typically displays the star-shaped seed arrangement that constitutes the family crest. Climate Lowland tropics and subtropics. 12. Sugarplums Africa is home to more than 30 species of wild fruit trees belonging to the genus Uapaca (Phyllanthaceae; also placed in Euphorbiaceae or Uapacaceae). Several produce flavorful, attractive fruits that engender enthusiasm wherever they occur. These delights add a sweet yet tangy zest to traditional foods from porridges to desserts. Fully ripe, these are plum- sized, yellow-brown in color, juicy, and honeylike in taste. Climate Seasonally dry wooded parkland. 13. Sweet Detar Throughout much of tropical Africa the detar tree (Detarium senegalense, Leguminosae) is common and its round brown pods well known. At first sight these fruits look like apricots, but physically they are more like tamarinds, with a crisp shell enclosing a rather flaky greenish pulp that makes good eating. As with tamarinds (see Part 1), sweet detars are especially enjoyed in West Africa. Most are eaten fresh, but some are dried in the sun and sold in the markets like dates. The hard shell and dry pulp give them an exceptional shelf life and the sweet-and-sour flavor appeals to most every palate. Climate Woody savannas and parkland.

OCR for page 185
INTRODUCTION 193 14. Tree Grapes About 40 different trees of the genus Lannea (Family Anacardiaceae) are to be found in the tropics of Asia and Africa. The species in Asia have received horticultural attention, but the 20 or so that are native to locations from Madagascar to The Gambia remain unmoved by modernity. Yet at least a dozen of these wild fruits could be valuable future food resources. Although belonging to the same plant family as mango, cashew, and pistachio, their fruits are more like grapes in form. They come in pendulous bunches and are reddish, purple, or black in color with a whitish bloom on the skin. Although some have a resinous taste, many have a pleasant flavor described as truly “grape-like.” Climate Tropical forests to tropical savannas.

OCR for page 185
TABLE 2: POTENTIAL ROLES FOR SELECTED WILD AFRICAN FRUITS PRIMARY OCCURRENCE *** = Outstanding; Food Rural Sustainable ** = Notable; Central Southern Overall Nutrition Security Development Landcare * = Average Africa Africa West Africa East Africa ** *** ** *** Aizen (Mukheit) *** √ √ Chocolate Berries *** ** *** *** *** √ √ √ √ Custard Apples ** ** * ** * √ √ √ √ Ebony *** ** *** *** *** √ √ √ √ Gingerbread Plums *** ** * *** *** √ √ √ √ Gumvines ** ** * ** ** √ √ Icacina ** ** *** ** ** √ √ Imbe ** ** * *** ** √ √ √ √ Medlars *** ** *** *** *** √ √ √ Monkey Oranges ** ? *** *** *** √ √ √ √ Star Apples ** * * ** *** √ √ √ √ Sugarplums *** *** *** *** *** √ √ √ √ Sweet Detar *** *** *** ** *** √ Tree Grapes ** ** ** *** ** √ √ √ √ NB: The underlying justifications for these broad rankings are discussed in the following sections on Nutrition, Food Security, Rural Development, and Sustainable Landcare; greater detail is provided in the separate chapters on individual crops.

OCR for page 185
INTRODUCTION 195 POTENTIAL ROLES FOR SELECTED WILD AFRICAN FRUITS To give some idea of their potential to help overcome the great central issues of African humanitarian and economic development we now summarize the above mentioned wild fruits’ likely relevance to four of Africa’s biggest needs for survival and social stability: nutrition, food security, rural prosperity, and general landcare. OVERCOMING MALNUTRITION Wild fruits can contribute to overcoming malnutrition because the plants survive where their more pampered kin perish and thus produce nothing whatever. Additionally, because wild plants are necessarily self-sufficient, they promote well-being for future generations as well as for the present. It is noteworthy that harsh and difficult locations contribute disproportionately to malnutrition mortality. So, even with their limitations, wild fruits often offer a good at-home solution. And, with better knowledge and more attention, wild fruits can contribute much more. On the other hand, these species are essentially unknown to medical doctors, nutritionists, bio- and analytical chemists, agronomists, horticulturists, or even the technical literature. Only a few have been analyzed in detail for nutritional components, and whether those results are representative is uncertain. Therefore considerable ambiguity over their true relative worth, let alone their future, is to be expected. Below is a summary of the merits, specifically in terms of fighting malnutrition, of each of the wild fruits highlighted in the second section of this book. Aizen (Mukheit) Aizen’s nutritional content is poorly known but people existing in the extreme climates where the plant grows can rarely expect foods of high nutrition. They can, however, get aizen…and giving them easier access to more of it could prove a key for reducing mortality in the locations that contribute more than most to the suffering caused by extreme malnutrition. The pulp reportedly contains good calcium, phosphorus, iron, and some B vitamins. It is said, however, that its main value is in supplying vitamins A and C. It also provides a little protein. Inside are greenish seeds that resemble peas in appearance and usage. Nutritionally speaking, these are perhaps the better instrument for inducing healthier living. They have as much starch and soluble carbohydrate as the local grains (sorghum and millet). Their protein content is high (relative to cereals) and it is of at least moderate nutritional quality. The seeds apparently are also rich in zinc, a mineral considered important for maintaining and recovering well-being.

OCR for page 185
LOST CROPS OF AFRICA 208 Below is a summary of the merits, specifically in terms of sustainable landuse, of each of the wild fruits highlighted in the remainder of the book. Aizen (Mukheit) This plant’s endurance is remarkable. Shade-temperatures that reach as high as 45°C are far from rare in its habitat. Arid stony slopes, sand dunes, and cracking-clay plains are its bread and butter. This and the fact that livestock and wildlife leave it alone most of the year means people need not, as we have said, worry that their plants will be devastated by the desert or devoured by goats or gazelles. For this double security alone, aizen promises to be a practical way to protect erodible slopes, stabilize dunes, create windbreaks capable of keeping the ground unscoured, demarcate boundaries, and provide shelter for livestock and their owners. Further, aizen provides year-round shade where even slight relief from the sun is a great gift. And it also offers other utilitarian benefits in places where people need help in the struggle of life. Chocolate Berries Everyone likes having a chocolate berry tree around, and people already go out, gather the seeds, and deliberately plant their own. These 70 species include some specimens with exceptional promise in agroforestry and rural reforestation. Indeed, those might become standard components in the species mix employed to stabilize eroding slopes and abandoned wastelands across much of the continent. Among other advantages is their longevity. These trees are long-lived; moreover, they’re never cut down irresponsibly. Even scraggly wild specimens are protected by societal rules and regulations. Almost everyone—not to mention the environment—benefits from living chocolate-berry trees. Custard Apples With their notable sugar content, these fruits appeal as foodstuffs, but the plants fall far short of any ideal for environmental protection. They are certainly capable of surviving without human help, and they add value to wooded wild areas. Though not often stand-alone trees, their shade is also desirable. Thus, people tend to preserve and protect their habitat. But beyond that they are not particularly hardy and seem to do little to save the soil or improve the ambiance in any other exceptional manner. Ebony For African agroforestry projects, local Diospyros species could be especially valuable. People know and love these trees. As long as superior planting materials are supplied, millions are likely to plant them

OCR for page 185
INTRODUCTION 209 spontaneously and protect them from harm throughout a lifetime or two. Even now, volunteer plants are well cared-for. Indeed, African ebonies could become valuable not only for individual plantings but also for bordering streets and highways, for fencelines, for village squares, and for small-scale entrepreneurial endeavors of many kinds. Gingerbread Plums Producing vastly more of these tasty fruits under more organized conditions seems eminently feasible. Germinating the seeds is difficult, but most (perhaps all) Parinari species are easily reproduced via root suckers. These root cuttings also provide the key to propagating elite specimens. Through them, quality plantings could be quickly and easily established across much of Africa, clustered in villages perhaps, or scattered alongside roads in the valleys and tracks on the hillsides. Gumvines Adding vines as valuable as these might raise the economic worth of standing forests—thereby dampening the ardor to burn off the land or cut the trees for lumber. Incorporating gumvines into boundar rows, windbreaks, shelterbelts, and ex-situ conservation forest are also possibilities. Species that cling and climb could be a way to increase the utility of many tree plantings that are expected to provide long-term environmental benefits. Icacina Icacina forms vast thickets that are about as close to monoculture as can be found in nature. Their denseness protects the soil, which otherwise is often subject to erosion and degradation. This is a feature that might well be turned to environmental advantage. Imbe This is an unusual and eye-catching small tree. Its dense, spreading, or conical crown topping a short, often twisted trunk or cluster of trunks makes a striking sight. Its attractive form, together with the year-around foliage and heavily scented flowers, make imbe a landscaper’s dream—so much so that it is nowadays planted more for beauty than for food. This certainly opens it up to use for esthetic uses and bigger plantings, but this is probably the extent of its landcare advantages. Medlars Across southern Africa, local lore claims that the beneficent Vangueria infausta bears fruits heavily just before a big drought. In agroforestry the trees could find a notable niche. Already several Vangueria species are used

OCR for page 185
LOST CROPS OF AFRICA 210 as hedge plants to demarcate fields and farms. The trees’ ultimate continental potential is probably more for back gardens, bare patches of hillside, village greens, or the verges of roads and tracks and rivers. Monkey Oranges The trees that yield monkey oranges make excellent additions to gardens, parks, streets, and fencelines—providing not only food but also shade, shelter, and erosion protection. Much more could be made of them in caring for the African land. Star Apples Regardless of food production, the various African star-apple species are promising for protecting and improving stressed sites. They could prove useful, for example, in land reclamation, erosion control, and, especially, in reducing wind-erosion. For their ornamental value alone these trees merit attention. People love having one standing beside the house. They might make useful reforestation species too. Fully grown, they top out at 30 m in height and 2 m in girth, and their hard, white wood is world famous for quality and high price. Sugarplums Farmers clearing land normally leave every sugarplum standing. These highly respected trees can usefully complement backyard gardens, agroforestry operations, and more. They seem ideal tools for protecting soil as well as for conserving habitat and native biodiversity. Sweet Detar Robust and resilient, this large tree is a candidate for reforestation purposes. Although this legume probably does not fix notable amounts of nitrogen, it survives in harsh, infertile sites and tolerates some drought and much heat. All in all, sweet detars seem likely to make good backyard, village, and street trees, providing welcome shade and environmental benefits, not to mention copious food. Tree Grapes Although these fruits look like grapes, they are borne on trees, not vines. Even where the fruits go unharvested, the trees are still revered. They coppice well and sprout with vigor, which makes them useful for hedges. While the environmental benefits have yet to be evidenced in practice, they could be so great that Lannea species seem promising for vast shelterbelts to settle the soil and make life more livable in their historical heartland across the Sahel.

OCR for page 185
INTRODUCTION 211 WILD FRUIT ISSUES We finish this introduction with passing mention of some strategic issues that seem especially relevant to the further development of Africa’s wild fruit biodiversity. INCREASING WILD FRUIT USAGE Even where wild fruits grow in abundance, their significance is seldom fully appreciated. Locals consider them merely free wayside snacks for enjoyment alongside the roads, paths, and trails they take to school, to town, to the bus stop, or to the pastures. Outsiders, notably scientific investigators, have often been misled because people so fail to value wild fruits they go unmentioned in such things as socio-economic and nutritional surveys. Also, strangers from the city or a foreign country typically measure only the foods in the house and “on the table.” To them, the idea of a separate world of foods snatched from living nature could seem unimaginable. Sometimes, also, outsiders are victims of translation mistakes. In a number of African languages, for example, the local word generally translated as “food” refers only to cooked items, and therefore omits wild fruits. There have been few concerted efforts to physically integrate wild fruits into the mainstream of dietary development. Despite being integral parts of traditional culture, these are one of the most neglected of all African resources. To advance the greater use of wild fruits is an exciting area with high possibilities for benefiting scores of economies and millions of people. And the challenge may not be as great as might initially be assumed. Many of the following chapters attest that landowners already have a high regard for certain trees that produce wild fruits. Africa’s traditional shifting agriculture usually aims less at destroying such trees than cutting them back while keeping them alive. This is seen across many savanna areas. Of course some plants die when cut, but many re-grow from the stems and stumps, and thus provide a tree fallow that covers and protects and restores fertility to the site for the next round of crop planting. For this purpose, “edible” trees are in many places singled out for special protection. This is a valuable method of producing food, but increasing population pressure is seriously shortening fallow periods. Even stumps that re-sprout best are weakened and stressed beyond their limit if cut back too short or too often. A fast return to a fallowed site also reduces natural regeneration rates by retarding growth of plants too young to resist fire. Overgrazing is also a factor reducing natural regeneration rates. In addition, the wider use of animal traction or small tractors requires that stumps and roots be removed from cleared fields. And in forest zones, commercial logging opens land for shifting agriculture, meaning an expanding landscape where most species are stressed. Emphasizing wild fruits adds value to nurturing all such lands.

OCR for page 185
LOST CROPS OF AFRICA 212 Even small improvements in awareness of bush fruits might well bring big benefits to localities in which they grow. Increments that perhaps seem insignificant could eventually be lifesavers to societies on a nutritional edge. Exploring the greater use of the wild resource offers opportunities for innovations of the most far-reaching kind. Edible wild plants might, for example, be utilized for purposes such as groundcovers, shelterbelts, street trees, windbreaks, hedges, roadside screens, or erosion barriers. People (and especially children) could then, as in the past, find nourishment on every hand. It is not difficult to imagine the establishment of “edible parks,” “edible watersheds,” wild-food reserves, year-round fruit gardens, “edible fallows,” and street trees and hedges selected so as to provide a year-round cornucopia of “kid’s treats.” Such notions are especially important for towns and cities, as other parts of the tropical world have learned. Even in the center of Quito, Ecuador, for instance, bus stops usually have a native capulí cherry tree beside them. This is mainly to provide shade and beautification, but schoolchildren feed themselves as they wait for the ride home after a day in the classroom. In southern Mexico, many town squares are planted with mango trees that provide food and drink to kids as well as many adults (especially the poor). And in India, an African fruit tree, the tamarind, lines thousands of rural roads, paths, and highways, mainly for shade and shelter but partly to sustain the hungry. DEVELOPING WILD FRUITS Keeping wild fruits wild is certainly an important aspect of the future for Africa. But many of the native fruit species also seem to be good candidates for improvement, domestication, and commercial production. Awaiting the adventurous plant scientist and eager amateur are opportunities to create a new cultivated crop and possibly transform their own lives in the bargain. The limitations of propagation can be overcome more easily today than ever before. And the entry of traditional products into long-distance trade is also easier than ever before. Thus in the decades ahead the world of African fruits could be made afresh. For developing most of these species, the first requirement is selection— location and propagation of individual plants that yield superior fruits. Some features that make a superior fruit include large amounts of edible pulp, small numbers of small seeds, attractive colors, marketable size, appealing flavor, low stringiness, freestone features, resistance to pests and diseases, and long shelf life. Perhaps most important is yield potential, for this is what puts money in the grower’s pocket and incentive in the grower’s head. Tropical fruit trees must be approached across a broad front because the majority of specimens are not worth propagating—neither are the majority of wild apples, oranges, peaches, kiwifruits, and the rest. With most tree fruits, mass propagation of single “elite” specimens can turn a commonplace

OCR for page 185
INTRODUCTION 213 minor fruit into a major contributor. Oftentimes, only one plant in 10,000 (or many more) will bear such elite fruits. To find that one special plant, a person need not be a botanist, horticulturist, or other specialist. Indeed, the “loner” in a remote valley has a better opportunity of locating a winner in that genetic lottery than the scientist in the capital.6 With so much potential in wild fruits, many approaches to developing the resource are possible. In one, for instance, interested individuals could organize an “African wild-fruit development association.” Chapters could be established in different countries, or in the cyberworld. Their purpose: to save and share germplasm, to exchange results, to inventory various promising locations, to gather folklore, as well as to stimulate broader interest, to develop recipes, and, most of all, to get superior types into hands of villagers, landowners, marketers, exporters, and other potential users. This requires little or no government funding, and indeed might be more freewheeling, more dynamic, and more successful if it springs from grassroots operations organized and energized by enthusiasts. Schools could be encouraged to record yields, pollination methods, lifecycle stages, and so forth. This approach has already shown success in Botswana, where a small company organized a nationwide competition amongst school children to find plants with the biggest and sweetest fruit of selected species. Substantial prizes were given. The results were rewarding, producing fruits of exceptional quality that are now being promoted for the country’s benefit.7 Such generalized activities, while important and likely to bring success and satisfaction, can go only so far. Africa’s wild fruits offer such a wealth of benefits that formal research programs should also be set up all over the continent.8 In that way, horticulturists, plant pathologists, soil scientists, entomologists, foresters, and others can apply their training and experience to develop wild fruits. Examples of some specific technical needs are to: • Reduce the often-long delay between propagation and first fruiting. • Reduce the often-long delay between flowering and fruit maturation. • Identify early-, middle-, and late-producing, superior genotypes for development into cultivars. • Find how to propagate (both through seed and vegetative means), germinate, plant, and grow recalcitrant species. 6 It was an Australian housewife who discovered the 'Granny Smith' apple in the 1860s. The seedling popped up in her backyard after she had tossed out some old fruit. She recognized good taste and cooking qualities, and today it is one of the world's major apples. Her name was indeed Smith and she was a grandmother. 7 Recent information on this initiative can be found at www.veldproducts.org. 8 The "Cinderella Tree” initiative of the World Agroforestry Centre in Nairobi (www.icraf.org) for domestication and commercialization of multipurpose tree species was a good example of this thinking, which seems to be taking hold among the broader research communities.

OCR for page 185
LOST CROPS OF AFRICA 214 • Select desirable traits and specimens for propagation. • Determine the limits—geographic, phenologic, edaphic, and climatic—where a species can be successful. • Develop horticultural techniques—pruning, grafting, top-working, hybridizing, maintenance, orchard management, and more. • Develop ethnobotanical, horticultural, extension, vocational, or other appropriate curricula for school levels from entry through post-graduate. • Learn how to protect the plants from pests and pathogens. • Undertake cultivar trials to prove efficacy of superior genotypes. • Establish demonstration plots. • Preserve the sources of wild fruits. The involvement of professionals does not obviate the need for the grass- roots plant-lovers. Both offer much. Indeed, the collaboration between eager amateurs and devoted professionals has been a most successful one in the United States, where several societies of rare-fruit enthusiasts (of all age groups and walks of life) work together to introduce new fruits to the nation, with much enjoyment and personal satisfaction along the way. Exemplifying what can be done is the Florida mango industry, in which enthusiastic amateurs selected most of the cultivars. California’s avocado and date industries began similarly with amateur initiatives, as did several Australian fruit resources, including passionfruit, custard apple, and macadamia. NUTRITION In the exploration of wild plants there is of course much need for laboratory scientists in disciplines such as nutrition and food technology. Despite the importance of nutritional composition data, many of the wild fruits have gone unrecorded. If made available, nutritional information alone might convince planners of a species’ promise and potential. It is vital, therefore, to develop a nutritional database for the most important edible wild plants.9 For a relative pittance (at least in terms of today’s research budgets), this could create nutritional and economic returns beyond measure. Indeed, a concerted program of information or education would likely transform the way rural people regard the small, concentrated-in-flavor fruits they find around them and often spurn. And along with the realization of the importance of wild fruits could also come care and concern and commitment to their greater protection and greater use. Helpful here could be the precedents of a dozen or more nations (from Scandinavia to Chile) that publicly disseminate depictions of nutrition pyramids or piecharts to induce consumption of local fruits and vegetables and a more balanced diet. 9 We wish here to recognize the pioneering work of A.S. Wehmeyer, who in a lifetime of dedicated scholarship recorded the basic nutritional constituents of over 300 of South Africa's edible species.

OCR for page 185
INTRODUCTION 215 SUSTAINABLE FORESTRY Africans’ abiding interest in food trees could be made into a driving force for future forestry efforts. The problem is that foresters have traditionally dismissed such species. In their eyes these may be woody plants but they typically have “bad form” (that is, trunks not long and straight and properly rounded for the best production of timber). And they think of any food- producing tree as belonging to the alien sphere inhabited by horticulturists. Yet many of Africa’s wild fruits come from native forest trees. Of 1,000 indigenous trees growing in southern Africa, for example, more than 200 produce fruits eaten somewhere or another.10 Those tree-fruits may be eaten raw, dried, or mashed into paste; they may be eaten for health, hunger, or pleasure; they may be tasteless, astringent, or downright delicious. These comprise a vast forest food reserve, and such deep-rooted resources are urgently needed in these days when maintenance of trees is taking on greater and greater importance in sustaining a balanced environment. One particularly innovative concept, “salvation forestry,” might well soon employ wild fruit trees. In this system, local people produce products in the forests in ways that ensure them a stake in the profits. The goal is to help the villagers to become so dependent on natural forest bounty that they become the fiercest of all conservationists.11 Perhaps there may also be ways to get credits for carbon sequestration or contributions to the conservation of biodiversity. Since only the fruits are harvested, these trees could also be seen as ideal for long-term credit schemes. Such local support is crucial because many countries are so overcrowded that poor people are spilling out into the forests and savannas in never- ending numbers. In the past, authorities attempted to protect endangered systems behind the guise of exclusionary laws, but even the best-run nations lack the massive resources needed to enforce legal protections in remote areas. Moreover, many of the rural peoples feel driven toward the food or cash they can get from turning forest into farmland. There seems no practical way to thwart millions, especially when they are desperate to survive. Salvation forestry, however, has a chance of succeeding. It is a “supply- side conservation” in which threatened areas now pay their way to survival. This approach is being adopted in several parts of the tropics. The organized use of wild tree-fruits could well improve the effectiveness of hundreds of efforts to conserve Africa’s wooded habitats. For these reasons, tree fruits should be incorporated into environmental programs, agroforestry, forestry, agricultural projects, and programs dealing 10 Palmer, E. and Pitman, N. 1972. Trees of southern Africa, covering all known indigenous species in the Republic of South Africa, South-West Africa, Botswana, Lesotho & Swaziland. A.A. Balkema, Cape Town. 11 The Food and Agriculture Organization's (www.fao.org) initiative for Promotion and Development of Non-Wood Forest Products has been one of the leaders in this area.

OCR for page 185
LOST CROPS OF AFRICA 216 with sustained food security for the peoples of Africa. Taken all in all, wild tree fruits are good for the environment, good for the people, and good for national stability in all nations, but most especially in those under-nourished and under-performing climes that fall below the Sahara. SOCIAL DIFFICULTIES Of course, in developing fruit activities, obstacles will intervene. Some could arise from social issues confronted by any tree planting effort in Africa, including questions of tenure and of the traditions of planting or owning trees. Other obstacles will arise from traditions concerning specific tree species. The very act of valuating what was essentially a free foodstuff will require careful evaluation of habits and community customs. In countries where national forest services have a mandate to protect naturally occurring trees, including those which bear fruit, clarification of ownership of wild fruit trees planted by individuals or communities may be necessary.12 Should wild fruits ever become economically valuable on a level approaching that of mangos and citrus a new set of issues come into play. For example, grower’s need access to the land on which their trees are planted, so as to protect and benefit from the investment of time and money over the decades the trees remain productive. Many such social challenges must be considered when pursuing development of wild fruits. It is important also to realize that customary practices and even superstitions still play a strong role in the lives of many rural peoples. For example, in places some tree species may be designated for the use of specific groups. Similarly, the land-tenure system, in which land is communally owned (and also its resources, including trees for fruit), may militate against individual people planting trees. In some societies, such an act could arouse jealousy and suspicion and perhaps incur wrath by flouting inherited authority to “parcel out” land. A stand of trees, after all, implies permanency of tenure.13 So, research on wild fruits should take account of both the sociocultural systems in which the trees occur and the farming systems in which eventual cultivation of these trees might have to fit. This multiple-use feature is of special significance. One of our most experienced contributors—a botanist with a long lifetime’s experience with African plants—wrote: “In general I feel that your search for food crops in Africa, in particular useful fruits, may be in vain. There are so many exotic fruit trees available that further new ones may be unlikely to repay the cost of development.” But then he added 12 It is interesting to note that the legal right to use and enjoy the advantages or profits of another’s property, called “usufruct,” arises from the Latin phrase for “use of fruits.” It also bears the proviso that the property not be damaged or altered in any way. 13 For thoughts on these matters we want especially to thank B.N. Wolstenholme, who added, as if to reassure us, “These problems are real!”

OCR for page 185
INTRODUCTION 217 as an afterthought: “As I think over the matter, I realize however that while there may be few plants worthy of cultivation purely for their fruits there probably are quite a considerable number worth growing on a multipurpose basis. Among the uses to be considered: fodder for reserve use in time of drought; sticks for hut building and so forth; wood for carving; fiber; medicines; honey and beeswax; bark; roots; and seeds for protein and cooking oil. All these are often more useful than are the fruits eaten for taste, minerals, and vitamins.” In the view of this panel, it is worthwhile pursuing the full plethora of possibilities offered by the wild fruits of Africa—consumption and commerce, as well as whatever else can be made from the plant or its byproducts. For too long, the spark of modern ingenuity has ignored these ancient foods. * * * The potential of Africa’s wild fruits to improve its quality of life has been emphasized in the summary outlines above, but they are also constrained by various limitations, all of which are discussed in greater detail in the chapters that follow.

OCR for page 185