Studies of what scientists actually do belie these stereotypes. They approach problems in many different ways and with many different preconceptions. There is no single “scientific method” universally employed by all. Scientists use a wide array of methods to develop hypotheses, models, and formal and informal theories. They also use different methods to assess the fruitfulness of their theories and to refine their models, explanations, and theories. They use a range of techniques to collect data systematically and a variety of tools to enhance their observations, measurements, and data analyses and representations.

Studies also show that science is fundamentally a social enterprise. Scientists talk frequently with their colleagues, both formally and informally. Science is mainly conducted by large groups or widespread networks of scientists. An increasing number of women and minorities are scientists—although still not enough to match their representation in the population. They exchange e-mails, engage in discussions at conferences, and present and respond to ideas via publication in journals and books. Scientists also make use of a wide variety of cultural tools, including technological devices, mathematical representations, and methods of communication. These tools not only determine what scientists see but also shape the kinds of observations they make.

Although different domains of science rely on different processes to develop scientific theories, all domains of science share certain features. Data and evidence hold a primary position in deciding any issue. When well-established data, from experiments or observations, conflict with a hypothesis or theory, that idea must be modified or abandoned and other explanations must be sought that can incorporate or take account of the new evidence. Theories, models, and hypotheses are rooted in empirical evidence and therefore can be tested and revised or expanded if necessary. Scientists develop and modify models, hypotheses, and theories to account for the broadest range of observations possible.

The Language of Science

In science, words are often given specific meanings that may be different from or more precise than their everyday meanings. It is important for educators to be clear about specific scientific usage to avoid confusion.

A scientific theory—particularly one that is referred to as “the theory of …,” as in the theory of electromagnetism or the theory of thermodynamics or the theory of Newtonian mechanics—is an explanation that has undergone significant testing.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement