assessment development, staff meetings) may draw on the accompanying questions in Appendix A and extended examples in Appendixes B and C.

This book contains the major observations and conclusions made in Taking Science to School: Learning and Teaching Science in Grades K-8. The committee’s work has been reorganized and reshaped specifically for a practitioner audience. In addition, the book contains a number of elements that have been designed to make the committee’s conclusions as useful as possible in a classroom setting. Most noticeably, most of the chapters feature stories that are designed to make the research findings described in this book more concrete. Most of these stories are based on real classroom experiences (although in some cases the names of the students and teachers and some of the details of the events have been changed). As a result, they illustrate the complexities that teachers grapple with every day. They show how teachers work to select and design rigorous and engaging instructional tasks, manage classrooms, orchestrate productive discussions with culturally and linguistically diverse groups of students, and help students make their thinking visible using a variety of representational tools.

In writing its report, the Committee on Science Learning, Kindergarten Through Eighth Grade made an important point that applies to this book as well. In some areas, current research is not robust enough to offer a detailed, step-by-step road map for improving science education. But the need for improvement is urgent, and enough is known to move forward. As a result, the committee offered what it called “best bets” for improving science education. These best bets are based on well-substantiated research, but additional documentation is needed through continued research and careful evaluations of changing practices. By evaluating school, district, and state initiatives, these best bets can be transformed into well-researched alternatives for policy and practice.

The world is changing much faster now than it was just a couple of decades ago. Countries with scientifically proficient workers are likely to fare much better than those without them. Good decisions on such issues as stem cell research, climate change, and energy policy require that people have a sound education in science. The underrepresentation of women and many minority groups in U.S. science remains a serious problem, especially as those groups become a larger percentage of the population. The gap between disadvantaged students and mainstream students in science learning continues to be an affront to American ideals of fairness and opportunity.

Recent research can help teachers and other educators meet the many demands being made on them. This research points toward a kind of science education that differs substantially from what occurs in most science classrooms today. It’s time to ready science education for the 21st century.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement