Cover Image

HARDBACK
$69.00



View/Hide Left Panel

died when he was very young, and after his mother remarried, Harry’s stepfather, George Drickamer, adopted him. Harry was active in sports and played in the farm system of the Cleveland Indians. He attended Vanderbilt University on a football scholarship, transferred to Indiana University, and, a short time later, to the University of Michigan, where he was elected president of his class in the Engineering College. He received B.S. and M.S. degrees in 1941 and 1942.

In 1942, he took a position at the Pan American Refinery in Texas City, Texas, where, in his “spare time,” he carried out measurements on vapor-liquid equilibrium. The University of Michigan agreed to accept these studies and the results from a plant test on an extractive distillation tower (the first of its kind in the world) as a Ph.D. thesis. His publications on tray efficiency received considerable attention. With Harry Hummel, a colleague at Pan American, he published “Application of Vapor-Liquid Equilibria to an Analysis of a Commercial Unit for Toluene Purification,” which was recognized with the Colburn Award of the American Institute of Chemical Engineers in 1947.

Harry returned to the University of Michigan in February 1946 to complete course work requirements for the Ph.D. degree. His growing interest in scientific issues in engineering was a factor in his accepting a position later that year at the University of Illinois as an assistant professor in the chemical engineering curriculum, which was then part of the Chemistry Department. Of the 105 doctoral theses he directed, 86 were on chemical engineering. His research is described in 478 publications.

Harry Drickamer recognized that the most interesting properties of matter are determined by the outer shell electrons of atoms (“valence” electrons), which form the bonds that hold atoms together in molecules and materials. They also give rise to a material’s optical (e.g., color, phosphorescence, etc.), electrical, and magnetic properties. He understood that if one changed the distance between atoms by applying external pressure, interactions between the valence electrons of the constituent atoms in a molecule must change and that this would be manifested by alterations in physical and chemical properties.

He discovered that the application of pressure causes a change



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement