13 López-García, P. 2005. Extremophiles. In Lectures in Astrobiology, Volume 1 (M. Garguad, B. Barbier, H. Martin, and J. Reisse, eds.). Springer-Verlag, Berlin.

14 Rothschild, L.J., and Mancinelli, R.L. 2001. Life in extreme environments. Nature 409:1092-1101.

15 Holland, M., and Baross, J.A. 2003. Limits of life in hydrothermal systems. Pp. 235-250 in Energy and Mass Transfer in Marine Hydrothermal Systems (P.E. Halbach, V. Tunnicliffe, and J. Hein, eds.). Proceedings of the 89th Dahlem Conference. Springer-Verlag, Berlin.

16 Bartlett, D.H. 2002. Pressure effects on in vivo microbial processes. Biochemica et Biophysica Acta 1595:367-381.

17 Horikoshi, K. 1999. Alkaliphiles: Some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. 63:735-750.

18 Silver, S., and Phung, L.T. 1996. Bacterial heavy metal resistance: New surprises. Annu. Rev. Microbiol. 50:753-789.

19 Wiegel, J., and Kevbrin, V.V. 2003. Alkalithermophiles. Biochem. Soc. Trans. 32:193-198.

20 Ventoza, A., Nieto, J.J., and Oren, A. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62:504-544.

21 Ciaramella, M., Napoli, A., and Rossi, M. 2004. Another extreme genome: How to live at pH 0. TRENDS Microbiol. 13:49-51.

22 Ventoza, A., Nieto, J.J., and Oren, A. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62:504-544.

23 Kelley, D.S., Karson, J.A., Früh-Green, G.L., Yoerger, D.R., Shank, T.M., Butterfield, D.A., Hayes, J.M., Schrenk, M.O., Olson, E.J., Prokurowski, G., Jakuba, M., Bradley, A., Larson, B., Ludwig, K., Glickson, D., Buckman, K., Bradley, A.S., Brazelton, W.J., Roe, K., Elend, M.J., Delacour, A., Bernasconi, S.M., Lilley, M.D., Baross, J.A., Summons, R.E., and Sylva, S.P. 2005. A serpentinite-hosted ecosystem: The lost city hydrothermal field. Science 307:1428-1434.

24 Kaye, J.Z., and Baross, J.A. 2004. Synchronous effects of temperature, pressure and salinity on growth, phospholipid profiles, and protein patterns of four Halomonas species isolated from deep-sea hydrothermal-vent and sea surface environments. Appl. Environ. Microbiol. 70:6220-6229.

25 Kaye, J.Z., and Baross, J.A. 2004. Synchronous effects of temperature, pressure and salinity on growth, phospholipid profiles, and protein patterns of four Halomonas species isolated from deep-sea hydrothermal-vent and sea surface environments. Appl. Environ. Microbiol. 70:6220-6229.

26 Giovannoni, S.J., Tripp, H.J., Givan, S., Podar, M., Vergin, K.L., Baptista, D., Bibbs, L., Eads, J., Richardson, T.H., Noordewier, M., Rappé, M.S., Short, J.M., Carrington, J.C., and Mathur, E.J. 2005. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242-1245.

27 Billi, D., and Potts, M. 2002. Life and death of dried prokaryotes. Res. Microbiol. 153:7-12.

28 Potts, M. 1994. Desiccation tolerance of prokaryotes. Microbiol. Rev. 58:755-805.

29 Müller, V., Spanheimer, R., and Santos, H. 2005. Stress response by solute accumulation in archaea. Curr. Opin. Microbiol. 8:729-736.

30 Isken, S., and de Bont, J.A.M. 1998. Bacteria tolerant to organic solvents. Extremophiles 2:229-238.

31 Benner, S.A., Ricardo, A., and Carrigan, M.A. 2004. Is there a common chemical model for life in the universe? Curr. Opin. Chem. Biol. 8:672-689.

32 Bragger, J.M., Dunn, R.V., and Daniel, R.M. 2000. Enzyme activity down to 100°C. Biochim. Biophys. Acta 1480:278-282.

33 Stroud, R.M., Miercke, L.J.W., O’Connell, J., Khademi, S., Lee, J.K., Remis, J., Harries, W., Robles, Y., and Akhavan, D. 2003. Glycerol facilitator GlpF and the associated aquaporin family of channels. Curr. Opin. Struct. Biol. 13:424-431.

34 Kreuzer-Martin, H.W., Ehleringer, J.R., and Hegg, E.L. 2005. Oxygen isotopes indicate most intracellular water in log-phase Escherichia coli is derived from metabolism. Proc. Natl. Acad. Sci. U.S.A. 102:17337-17341.

35 Kashefi, K., and Lovley, D.R. 2003. Extending the upper temperature limit for life. Science 301:934.

36 Junge, K., Eicken, H., and Deming, J.W., 2004, Bacterial activity at 2 to 20°C in Arctic wintertime sea ice, Appl. Environ. Microbiol. 70:550-557; Kashefi, K., and Lovley, D.R., 2003, Extending the upper temperature limit for life, Science 301:934.

37 Schrenk, M.O., Kelley, D.S., Delaney, J.R., and Baross, J.A., 2003. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl. Environ. Microbiol. 69:3580-3592.

38 Holden, J.F., and Daniel, R.M. 2004. The upper temperature for life based on hyperthermophile culture experiments and field observations. Pp. 13-24 in The Subseafloor Biosphere at Mid-Ocean Ridges (W.S.D. Wilcock, E.F. DeLong, D.S. Kelley, J.A. Baross, and S.C. Cary, eds.). Geophysical Monograph 144. American Geophysical Union, Washington D.C.

39 Kashefi, K., and Lovley, D.R. 2003. Extending the upper temperature limit for life. Science 301:934, Table 1.

40 Charlier, D., and Droogmans, L. 2005. Microbial life at high temperatures, the challenges, the strategies. Cell. Mol. Life Sci. 62:2974-2984.

41 Beeby, M., O’Connor, B.D., Ryttersgaard, C., Boutz, D.R., Perry, L.J., and Yeates, T.O. 2005. The genomics of disulfide bonding and protein stabilization in thermophiles. PloS Biology 3:1549-1558.

42 Daniel, R.M., Holden, J.F., van Eckert, R., Truter, J., and Cowan, D.A. 2004. The stability of biomolecules and the implications for life at high temperatures. Pp. 25-39 in The Subseafloor Biosphere at Mid-Ocean Ridges (W.S.D. Wilcock, E.F. DeLong, D.S. Kelley, J.A. Baross, and S.C. Cary, eds.). Geophysical Monograph 144. American Geophysical Union, Washington D.C.

43 Sterner, R., and Liebl, W. 2001. Thermophilic adaption of proteins. Crit. Rev. Biochem. Mol. Biol. 36:39-106.

44 Summit, M., Scott, B., Nielson, K., Mathur, E., and Baross, J.A. 1998. Pressure enhances thermal stability of DNA polymerase from three thermophilic organisms. Extremophiles 2:339-345.

45 Daniel, R.M., Holden, J.F., van Eckert, R., Truter, J., and Cowan, D.A. 2004. The stability of biomolecules and the implications for life at high temperatures. Pp. 25-39 in The Subseafloor Biosphere at Mid-Ocean Ridges (W.S.D. Wilcock, E.F. DeLong, D.S. Kelley, J.A. Baross, and S.C. Cary, eds.). Geophysical Monograph 144. American Geophysical Union, Washington D.C.

46 Friedmann, E.I., and Sun, H.J. 2005. Communities adjust their temperature optima by shifting producer-to-consumer ratio, shown in lichens as models: 1. Hypothesis. Microb. Ecol. 49:523-527.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement