52 Martin, W., and Russell, M.J. 2002. On the origins of cells: A hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 385:59-85.

53 Chang, S. 1993. Prebiotic synthesis in planetary environments. Pp. 259-299 in The Chemistry of Life’s Origins (J.M. Greenberg, C.X. Mendoza-Gómez, and V. Piranello, eds.). Kluwer Academic Publishers, Dordrecht, Netherlands.

54 Donaldson, D.J., Tervahattu, H., Tuck, A.F., and Vaida, V. 2004. Organic aerosols and the origin of life: An hypothesis. Origins Life Evol. Biosph. 34:57-67.

55 Monnard, P.A., and Deamer, D.W. 2002. Membrane self-assembly processes: Steps toward the first cellular life. Anat. Rec. 268:196-207.

56 Segré, D., Ben-Eli, D., Deamer, D.W, and Lancet, D. 2001. The lipid world. Origins Life Evol. Biosph. 31:119-145.

57 Hanczyc, M.M., Fujikawa, S.M., and Szostak, J.W. 2003. Experimental models of primitive cellular compartments: Encapsulation, growth, and division. Science 302:618-622.

58 Wächtershäuser, G. 1992. Groundworks for an evolutionary biochemistry: The iron-sulphur world. Prog. Biophys. Mol. Biol. 58:85-201.

59 Russell, M.J., Daniel, R.M., Hall, A.J., and Sherringham, J.A. 1994. A hydrothermically precipitated catalytic iron sulfide membrane as a first step toward life. J. Mol. Evol. 39:231-243.

60 Donaldson, D.J., Tervahattu, H., Tuck, A.F., and Vaida, V. 2004. Organic aerosols and the origin of life: An hypothesis. Origins Life Evol. Biosph. 34:57-67.

61 Cleaves II, H.J., and Chalmers, J.H. 2004. Extremophiles may be irrelevant to the origin of life. Astrobiology 4:1-9.

62 de Duve, C. 1991. Blueprint for a Cell: The Nature and Origin of Life. Neil Patterson Publishers, Burlington, N.C.

63 de Duve, C. 2003. A research proposal for the origin of life. Origins Life Evol. Biosph. 33:559-574.

64 Weber, A.L. 2001. The sugar model: Catalytic flow reactor dynamics of pyruvaldehyde synthesis from triose catalyzed by poly-l-lysine contained in a dialyzer. Origins Life Evol. Biosph. 31:231-240.

65 Weber, A.L. 2002. Chemical constraints governing the origin of metabolism: The thermodynamic landscape of carbon group transformations under mild aqueous conditions. Origins Life Evol. Biosph. 32:333-357.

66 Cody, G.D., Hazen, R.M., Brandes, J.A., Morowitz, H., and Yoder, H.S., Jr. 2001. Geochemical roots of autrotrophic carbon fixation: Hydrothermal experiments in the system citric acid, H2O-(±FeS)−(±NiS). Geochim. Cosmochim. Acta 65(20):3557-3576.

67 Morowitz, H.J. 1999. A theory of biochemical organization, metabolic pathways, and evolution. Complexity 4:39-53.

68 Wächtershäuser, G. 1992. Groundworks for an evolutionary biochemistry: The iron-sulphur world. Prog. Biophys. Mol. Biol. 58:85-201.

69 Lindahl, P.A. 2004. Stepwise evolution of nonliving to living chemical systems. Origins Life Evol. Biosph. 34:371-389.

70 Smith, E., and Morowitz, H. 2004. Universality in intermediary metabolism. Proc. Natl. Acad. Sci. U.S.A. 101:13168-13173.

71 Orgel, L.E. 2000. Self-organizing biochemical cycles. Proc. Natl. Acad. Sci. U.S.A. 97:12503-12507.

72 Pross, A. 2004. Causation and the origin of life: Metabolism or replication first? Origins Life Evol. Biosph. 34:307-321.

73 Wächtershäuser, G. 1992. Groundworks for an evolutionary biochemistry: The iron-sulphur world. Prog. Biophys. Mol. Biol. 58:85-201.

74 Orgel, L.E. 2000. Self-organizing biochemical cycles. Proc. Natl. Acad. Sci. U.S.A. 97:12503-12507.

75 Shapiro, R. 2006. Small molecule interactions were central to the origin of life. Q. Rev. Biol. 81:105-125.

76 Weber, A.L. 2001. The sugar model: Catalytic flow reactor dynamics of pyruvaldehyde synthesis from triose catalyzed by poly-l-lysine contained in a dialyzer. Origins Life Evol. Biosph. 31:231-240.

77 Weber, A.L. 2002. Chemical constraints governing the origin of metabolism: The thermodynamic landscape of carbon group transformations under mild aqueous conditions. Origins Life Evol. Biosph. 32:333-357.

78 Shapiro, R. 2006. Small molecule interactions were central to the origin of life. Q. Rev. Biol. 81:105-125.

79 Wächtershäuser, G. 1992. Groundworks for an evolutionary biochemistry: The iron-sulphur world. Prog. Biophys. Mol. Biol. 58:85-201.

80 Lindahl, P.A. 2004. Stepwise evolution of nonliving to living chemical systems. Origins Life Evol. Biosph. 34:371-389.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement