18 Ricardo, A., Carrigan, M.A., Olcott, A.N., and Benner, S.A. 2004. Borate minerals stabilize ribose. Science 303:196.

19 Schoffstall, A.M. 1976. Prebiotic phosphorylation of nucleosides in formamide. Origins Life Evol. Biosph. 7:399-412.

20 Schoffstall, A.M., Barto, R.J., and Ramo, D.L. 1982. Nucleoside and deoxynucleoside phosphorylation in formamide solutions. Origins Life Evol. Biosph. 12:143-151.

21 Schoffstall, A.M., and Liang, E.M. 1985. Phosphorylation mechanisms in chemical evolution. Origins Life Evol. Biosph. 15:141-150.

22 Sagan, C., Thompson, W.R., and Khare, B.N. 1992. Titan: A laboratory for prebiological organic chemistry. Acc. Chem. Res. 25:286-292.

23 Tawfik, D.S., and Griffiths, A.D. 1998. Man-made cell-like compartments for molecular evolution. Nat. Biotechnol. 16:652-656.

24 West, R.A. 1999. Atmospheres of the giant planets. Encyclopedia of the Solar System. Academic Press, New York.

25 Sagan, C., and Salpeter, E.E. 1976. Particles, environments, and possible ecologies in the Jovian atmosphere. Astrophys. J. 32:737-755.

26 Bains, W. 2004. Many chemistries could be used to build living systems. Astrobiol. 4(2):137-167.

27 Robertson, W.W., and Reynolds, R.E. 1958. Effects of hydrostatic pressure on the intensity of the singlet-triplet transition of 1-chloronaphthalene in ethyl iodide. J. Chem. Phys. 29:138-141.

28 King, A.D., Jr., and Robertson, W.W. 1962. Solubility of naphthalene in compressed gases. J. Chem. Phys. 37:1453-1455.

29 Bains, W. 2004. Many chemistries could be used to build living systems. Astrobiol. 4(2):137-167.

30 Randolph, T.W., Blanch, H.W., Prausnitz, J.M., and Wilke, C.R. 1985. Enzymatic catalysis in a supercritical fluid. Biotechnol. Lett. 7:325-328.

31 Hammond, D.A., Karel, M., Klibanov, A.M., and Krukonis, V. 1985. Enzymatic-reactions in supercritical gases. Appl. Biochem. Biotechnol. 11:393-400.

32 Nakamura, K., Chi, Y.M., Yamada, Y., and Yano, T. 1986. Lipase activity and stability in supercritical carbon-dioxide. Chem. Eng. Commun. 45:207-212.

33 Aaltonen, O., and Rantakyla, M. 1991. Biocatalysis in supercritical CO2.Chem. Tech. 21:240-248.

34 Kamat, S.V., Beckman, E.J., and Russell, A.J. 1995. Enzyme activity in supercritical fluids. Crit. Rev. Biotechnol. 15:41-71.

35 Aaltonen, O. 1999. Enzymatic biocatalysis. Pp. 414-445 in Chemical Synthesis Using Supercritical Fluids (P.G. Jessop and W. Leitner, eds.). Wiley-VCH, New York.

36 Aaltonen, O. 1999. Enzymatic biocatalysis. Pp. 414-445 in Chemical Synthesis Using Supercritical Fluids (P.G. Jessop and W. Leitner, eds.). Wiley-VCH, New York.

37 Rickard, D.T., and Wickman, F.E., eds. 1981. Chemistry and Geochemistry of Solutions at High Temperatures and Pressures: Physics and Chemistry of the Earth, 13/14. Pergamon Press, Oxford.

38 Ikushima, Y., and Arai, M. 1999. Stoichiometric organic reactions. Pp. 259-279 in Chemical Synthesis Using Supercritical Fluids (P.G. Jessop and W. Leitner, eds.). Wiley-VCH, New York.

39 Savage, P.E. 1999. Organic chemical reactions in supercritical water. Chem. Rev. 99:603-621.

40 Huang, B., and Walsh, J.J. 1998. Solid-phase polymerization mechanism of polyethyleneterephthalate affected by gas flow velocity and particle size. Polymer 39:6991-6999.

41 Goldanskii, V.I. 1996. Nontraditional mechanisms of solid-phase astrochemical reactions. Kinet. Catal. 37:608-614.

42 Allamandola, L.J., and Hudgins, D.M. 2003. From interstellar polycyclic aromatic hydrocarbons and ice to astrobiology. Solid State Astrochemistry, NATO Science Series II: Mathematics, Physics, and Chemistry (V. Pirronello and J. Krelowski, eds.). Kluwer, Dordrecht.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement