1992, 1996; Howell 1995; Martí 1995; Anderson et al. 1996a,b, 1997, 1999, 2000; Johnson et al. 2000a,b; Thelander and Rugge 2000; Hunt 2002; Smallwood and Thelander 2004, 2005; Hoover and Morrison 2005). This attention is likely because raptors are lower in abundance than many other bird species, have symbolic and emotional value to many Americans, and are protected by federal and state laws. Raptor carcasses also remain much longer than carcasses of small birds, making fatalities of raptors more conspicuous to observers. Raptors occur in most areas with potential for wind-facility development, although raptor species appear to differ from one another in their susceptibility to collisions.

Early studies of wind-energy facility impacts on birds were based on the carcasses discovered during planned searches. However, fatality estimates did not account for potential survey biases, most importantly biases in searcher efficiency and carcass “life expectancy” or persistence. Most current estimates of fatalities include estimates for all species and are based on extrapolation of the number of observed fatalities at surveyed turbines to the entire wind-energy facility, although not all studies adequately correct for observer-detection bias and carcass persistence, the latter usually referred to as scavenger-removal bias (e.g., Erickson et al. 2004).

Until relatively recently, little attention has been given to bat fatalities at wind-energy installations. This is largely because few bat fatalities have been reported at most wind-energy facilities (Johnson 2005). While some bat fatalities were reported beginning in the early 1990s, few of the earliest studies of fatalities at wind-energy facilities were designed to look for or evaluate bat fatalities, and thus did not use systematic search protocols or account for observer bias or scavenging. The scarcity of reported fatalities also may be due in part to the rarity of post-construction studies designed specifically to detect bat fatalities at wind-energy facilities. Recent surveys indicate that some wind-energy facilities have killed large numbers of bats in the United States (Arnett 2005; Johnson 2005), Europe (Dürr and Bach 2004; Hötker et al. 2004; UNEP/EUROBATS 2006), and Canada (R.M.R. Barclay, University of Calgary, personal communication 2006).


In the following discussion, fatality rate is presented as fatalities/ turbine/year or fatalities/MW/year. Because turbine size, and presumably risk, varies from facility to facility, we have chosen to make comparisons of fatalities among turbines using the metric fatalities/MW/year. The MW used in this metric represents the nameplate capacity for the turbines and does not represent the actual amount of MW produced by a turbine or wind-energy plant. The reader is referred to Chapter 2 for a more general discussion of nameplate capacity. A more accurate measure of MW pro-

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement