since 1998 because of competitive pricing from foreign suppliers (Reba et al. 2000). According to a report produced by the NERAC (Wagner et al. 1999), ORNL had a substantial inventory of enriched stable isotopes. Although the supply is not seen as disappearing in the near term, there is a concern that without a clear plan to address future needs, researchers both in the United States and worldwide will face a shortage of enriched stable isotopes.

Research radionuclide distribution has also been affected by the Energy and Water Development Appropriations Act of 1990 (Public Law 101-101), which requires the DOE to operate on a full cost recovery8 model (Sidebar 5.3). A consequence of this law has been the competing demand between producing high-cost, non-commercial radionuclides for researchers and supplying high-volume, commercial-use radionuclides to the private sector. The requirement for full cost recovery has made access to novel radionuclides cost-prohibitive for the vast majority of laboratories and clinics and is one of the major impediments to progress in nuclear medicine research.

A number of studies by different organizations, including the Institute of Medicine, have investigated the isotope (i.e., radionuclides and stable isotopes) needs of the country (Sidebar 5.4 provides a list of references). All of these studies came to the same conclusion: a dedicated radionuclide production facility is urgently needed to foster and facilitate research and training in the use of radionuclides in the biosciences and to provide a domestic, year-round, continuous supply of radionuclides for nuclear medicine practice.


To determine the current and future radionuclide production needs for furthering nuclear medicine research, the committee solicited input from experts in the field. Table 5.2 is a list of the radionuclides most frequently described as being essential to nuclear medicine research. Several of these research radionuclides are not being produced in sufficient quantities to meet the research demand. The technical and nontechnical needs and impediments are summarized in Sections 5.4.1 and 5.4.2, respectively.

Technical Needs and Impediments

There is no domestic (i.e., U.S.) source for most of the medical radionuclides used in day-to-day nuclear medicine practice. Furthermore, the lack of dedicated domestic accelerator and reactor facilities for year-round production of medical radionuclides for research is limiting the develop-


Full cost recovery means recovering or funding the full costs of a project or service, including overhead.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement