further reduce available supplies. Increased biofuels production adds pressure to the water management challenges the nation already faces.

Crop Water Availability and Use

Some of the water needed to grow biofuel crops will come from rainfall, but the rest will come from irrigation from groundwater or surface water sources. The primary concern with regard to water availability is how much irrigation will be required—either new or reallocated—that might compete with water used for other purposes. Irrigation accounts for the majority of the nation’s “consumptive use” of water—that is the water lost through evaporation and through plant leaves that does not become available for reuse.

The question of whether more or less water will be applied to biofuel crops depends on what crop is being substituted and where it is being grown. For example, in much of the country, the crop substitution to produce biofuel will be from soybeans to corn. Corn generally uses less water than soybeans and cotton in the Pacific and Mountain regions, but the reverse is true in the Northern and Southern Plains, and the crops use about the same amount of water in the North Central and Eastern regions.

There are many uncertainties in estimating consumptive water use of the biofuel feedstocks of the future. Water data are less available for some of the proposed cellulosic feedstocks—for example, native grasses on marginal lands—than for widespread and common crops such as corn, soybeans, sorghum, and others. Neither the current consumptive water use of the marginal lands nor the potential water demand of the native grasses is well known. Further, while irrigation of native grass today would be unusual, this could easily change as production of cellulosic ethanol gets underway.

In the next 5 to 10 years, increased agricultural production for biofuels will probably not alter the national-aggregate view of water use. However, there are likely to be significant regional and local impacts where water resources are already stressed.

Water Quality Impacts

Fertilizers applied to increase agriculture yields can result in excess nutrients (nitrogen [N] and to a lesser extent, phosphorous [P]) flowing into waterways via surface runoff and infiltration to groundwater. Nutrient pollution can have significant impacts on water quality. Excess nitrogen in the Mississippi River system is known to be a major cause of the oxygen-starved “dead zone” in the Gulf of Mexico, in which many forms of marine life can-

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement