National Academies Press: OpenBook
« Previous: Front Matter
Suggested Citation:"Summary ." National Research Council. 2007. Benchmarking the Competitiveness of the United States in Mechanical Engineering Basic Research. Washington, DC: The National Academies Press. doi: 10.17226/12055.
×

Summary

Mechanical engineering is critical to the design, manufacture, and operation of small and large mechanical systems throughout the U.S. economy. It is often called upon to provide scientific and technological solutions for national problems, playing a key role in the transportation, power generation, advanced manufacturing, and aviation industries, to mention a few. As pointed out in a 2002 National Science Foundation workshop,1 “Today, the synergy of science and technology is producing an era of profound change. [Mechanical engineering] is intrinsic to this change through its impact on enabling technologies. These technologies include: micro- and nano-technologies, cellular and molecular biomechanics, information technology, and energy and environment issues.”

Much like many other science and engineering disciplines, the field of mechanical engineering is facing issues of identity and purpose as it continues to expand beyond its traditional core into biology, materials science, and nanotechnology. Concerns about educating students, future employment opportunities, and the fundamental health of the discipline and industry are regular topics of discussion in the mechanical engineering community—for example, at meetings sponsored by the American Society of Mechanical Engineers (ASME) or the National Science Foundation.

STUDY BACKGROUND

Before addressing questions of how mechanical engineering must shift to meet future needs, it is imperative to understand its current health and international standing. At the request of the National Science Foundation Engineering Directorate, the National Academies performed an international benchmarking exercise to determine the standing of the U.S. research enterprise in the field of mechanical engineering relative to its international peers.

The field of mechanical engineering was benchmarked by an ad hoc panel consisting of 11 members, 10 from the United States and one from Canada, with expertise across the 11 selected areas covered in the report (discussed in Chapter 1): acoustics and dynamics, bioengineering, computational mechanics, design and computer-aided design (CAD), dynamic systems and controls, energy systems, manufacturing and computer-aided manufacturing, mechanics of engineering materials, microelectromechanical systems and nanoelectromechanical systems (MEMS/Nano), thermal systems and heat transfer, and tribology. The panel was charged with addressing three specific questions:

1

New Directions in Mechanical Engineering, Report from a Workshop Organized by the Big-Ten-Plus Mechanical Engineering Department Heads, Clearwater Beach, Florida, January 25-27, 2002, National Science Foundation.

Suggested Citation:"Summary ." National Research Council. 2007. Benchmarking the Competitiveness of the United States in Mechanical Engineering Basic Research. Washington, DC: The National Academies Press. doi: 10.17226/12055.
×
  1. What is the current position of U.S. mechanical engineering basic research relative to that of other regions or countries?

  2. What key factors influence U.S. performance in mechanical engineering?

  3. On the basis of current trends in the United States and abroad, what will be the relative U.S. position in the near term and in the longer term?

Following a process similar to that established in Experiments in International Benchmarking of U.S. Research Fields,2 the panel was instructed to perform its charge in a short time frame and with a limited budget. The group met in person once and otherwise communicated by way of teleconference or electronic mail. Thus, in order to adequately respond to its charge, the panel had to limit the scope of the benchmarking exercise to assessing the state of basic (fundamental) research as determined by the open published literature, the opinions of its peers, and other sources of easily accessible information. This benchmarking exercise was conducted based on the premise that evaluating this type of more “academic” research information would give a good estimate of the quality and quantity of fundamental research being conducted, which could in turn be used as an indicator of the competitiveness of overall U.S. mechanical engineering basic research. Thus, this exercise in no way presents a complete picture of the research activity in the field—particularly the industrial component.

The quantitative and qualitative measures employed to compare U.S. mechanical engineering basic research with that in other nations included analysis of journal publications (numbers of papers, citations of papers, and most-cited papers), utilizing such sources as Thompson ISI Essential Science Indicators and Scopus. In addition, the panel asked leading experts from the United States and abroad to identify the "best of the best" whom they would invite to an international conference in their subfield. The national makeup of these “virtual congresses” provides qualitative information on leadership in mechanical engineering. The panel also examined trends in the numbers of degrees, employment, and research funding of U.S. mechanical engineering, relying heavily upon NSF Science and Engineering (S&E) Indicators 2006 and earlier years.

The resulting report details the status of U.S. competitiveness in mechanical engineering basic research and its areas and subareas. This benchmarking exercise attempts to determine the current status of the discipline and to extrapolate the future status based on current trends. The report does not make judgments about the relative importance of leadership in each area or recommendations on actions to be taken to ensure such leadership in the future.

IMPORTANCE OF MECHANICAL ENGINEERING

Mechanical engineering is a discipline that encompasses a broad set of research areas. At the core of mechanical engineering are the design, analysis, manufacturing, and control of solid, thermal, and fluid mechanical systems—as well as, innovative application of technology, systems integration, creation and development of new products and markets, and solution to product problems. This includes optoelectrical-mechanical machines, materials, structures, and

2

Committee on Science, Engineering, and Public Policy, 2000, Experiments in International Benchmarking of U.S. Research Fields, National Academy Press, Washington, D.C.

Suggested Citation:"Summary ." National Research Council. 2007. Benchmarking the Competitiveness of the United States in Mechanical Engineering Basic Research. Washington, DC: The National Academies Press. doi: 10.17226/12055.
×

micro- and nanoscale devices. Key aspects of the discipline also include heat transfer, combustion, and other energy conversion processes; solid mechanics (including fracture mechanics); fluid mechanics; biomechanics; tribology; and management and education associated with the above areas.

Medical research in particular is moving toward the molecular level, and rigorous mechanical engineering is central to future progress in medicine. Mechanical engineering plays a significant role in tissue engineering, medical instrumentation, prostheses, and medical devices.

Mechanical engineering will also play a central role in attaining energy independence. Almost all aspects of the national response to alternative energy issues involve mechanical engineering, including energy conversion, hybrid power, energy storage, and utilization of alternative fuels. Mechanical engineers are now working to develop sustainable energy sources including new photovoltaic devices.

Mechanical engineering also holds the keys to improving our environment. Mechanical engineers have developed cleaner, more efficient energy conversion systems and new materials from renewable or recycled resources. Mechanical engineers aim to develop highly selective, energy-efficient, and environmentally benign new synthetic methods for the sustainable production of energy and materials.

The dramatic growth in the use of computer methods for modeling and simulation of mechanical systems has had a profound impact on mechanical engineering, and the field of computational mechanics has become a vital component of this engineering discipline.

KEY FINDINGS AND CONCLUSIONS

The key findings and conclusions of the report are summarized below.

The United States is Among the Leaders in Mechanical Engineering Basic Research

Evidence for current research leadership in mechanical engineering basic research comes from analysis of journal articles, most cited articles, and virtual congresses by the panel (described in more detail in Chapter 2). Overall, the United States is among the leaders in mechanical engineering basic research. However, excellent mechanical engineers throughout the world provide stiff competition for the United States, especially in Asia and Europe.

  • In 2002-2006 the United States published 24 percent of the mechanical engineering articles in the world. For 1987-1991, the U.S. contribution was 48 percent. A stiff competitor for numbers of publications is China, which published 7,580 articles in 2006, while the United States authored 5,660 articles.

  • U.S. mechanical engineers contribute strongly as authors to the leading research journals in this field, accounting for about 40 percent of the articles and 40 percent of the most-cited articles in 68 selected journals.

  • U.S. mechanical engineers contributed 65 or more out of the 100 most-cited articles in the Scopus database from 1987 to 2006.

Suggested Citation:"Summary ." National Research Council. 2007. Benchmarking the Competitiveness of the United States in Mechanical Engineering Basic Research. Washington, DC: The National Academies Press. doi: 10.17226/12055.
×
  • The combined virtual congress and journal analysis supports the conclusion that the United States is the leader or among the leaders in all areas of mechanical engineering basic research. The United States is

    • The leader in bioengineering, design and CAD, manufacturing/CAM, mechanics of materials , and thermal and heat transfer, with an average 50-70 percent U.S. contribution; and

    • Among the leaders in acoustics and dynamics, computational mechanics dynamics and controls, energy systems, and MEMS/nano tribology, with an average 30-50 percent U.S. contribution.

Overall, the United States is among the leaders in mechanical engineering basic research, with the following average contributions:

  • 50 percent of virtual world congress (VWC) speakers,

  • 40 percent of journal articles, and

  • 40 percent of most-cited articles.

These results indicate that overall the United States is among the leaders in mechanical engineering basic research.

A Combination of Factors is Responsible for U.S. Basic Research Leadership in Mechanical Engineering

U.S. research leadership in mechanical engineering basic research is the result of a combination of key factors, including a national instinct to respond to external challenges and to compete for leadership. Over the years, the United States has been a leader in innovation as a result of cutting-edge facilities and centers, and a steady flow of mechanical engineers and research funding.

  • Major centers and facilities provide key infrastructure and capabilities for conducting research and have provided the foundation for U.S. leadership. Key capabilities for mechanical engineering basic research include the following:

    • Measurement and standards

    • Materials characterization and micro- and nanofabrication

    • Manufacturing and automation

    • Biomechanical engineering

    • Supercomputing and cyberinfrastructure

    • Small- and large-scale fluid flow systems

  • There is increasingly strong competition for international science and engineering human resources. Between 1997 and 2005, the number of U.S. citizens who received mechanical engineering Ph.D. degrees declined 35 percent. Nevertheless, the United States has

Suggested Citation:"Summary ." National Research Council. 2007. Benchmarking the Competitiveness of the United States in Mechanical Engineering Basic Research. Washington, DC: The National Academies Press. doi: 10.17226/12055.
×

maintained a steady supply of Ph.D. mechanical engineering graduates over the years. This has meant relying increasingly upon foreign-born students.

  • Research funding for S&E overall and in mechanical engineering in particular has been steady. In 2005, more than $900 million was spent on mechanical engineering research and development (R&D) at academic institutions. Of this, about two-thirds consisted of federal expenditures. Federal support for U. S. mechanical engineering research between 1999 and 2003 was on average about 1 percent of the total U.S. R&D budget, with the largest portion (more than 70 percent) coming from the U.S. Department of Defense (DOD).

Challenges Lie Ahead for the Future Position of Mechanical Engineering Basic Research

The United States now holds a position among the leaders in most areas of mechanical engineering basic research, but because of the advance of mechanical engineering in other nations, competition is increasing and the U.S. lead will shrink. The United States is particularly strong in areas at the interface with other disciplines. In these areas, which include bioengineering, design, and mechanics of materials, the United States will maintain the leadership position in spite of growing competition. In some core areas where the U.S. position is currently not as strong, such as acoustics and dynamics, dynamics and controls, computational mechanics, and tribology, the U.S. position among the leaders may continue to fade.

On the basis of current trends in the United States and abroad, the relative future U.S. position in mechanical engineering basic research is outlined below:

  • There will be growing industrial opportunities in China and India, which will result in increased mechanical engineering research talent and leadership abroad.

  • There will likely be continued movement offshore of mechanical engineering R&D by U.S. companies, as well as increased competition from foreign companies. Local talent will be hired, which will likely include international students educated and trained in the United States.

  • There will also be more international research collaborations (United States and other countries, between countries in the European Union, etc.).

  • U.S. universities will continue to reach out and offer educational opportunities abroad and online. If the United States does not, other countries certainly will.

  • Contemporary issues such as national security, energy, manufacturing competitiveness, and sustainability will be a strong influence on research directions in mechanical engineering. These are areas in which mechanical engineering can make significant contributions.

  • Going forward, there will be a continued emergence of certain fields such as MEMS, nanotechnology, mechatronics, alternative energy sources, biomedical materials and devices, green manufacturing, and materials over many length scales. In addition, there will be continued importance of high-technology fields where the United States maintains a strong leadership position, such as the design and manufacturing of civilian and military aircraft, healthcare diagnostics, and power generating systems.

  • U.S. academic mechanical engineering departments continue to attract international talent for graduate studies. However, the barriers to travel for international students and visiting

Suggested Citation:"Summary ." National Research Council. 2007. Benchmarking the Competitiveness of the United States in Mechanical Engineering Basic Research. Washington, DC: The National Academies Press. doi: 10.17226/12055.
×

faculty may impact the ability of the United States to continue to attract this important source of U.S. mechanical engineering basic research talent.

CONCLUSION

U.S. leadership in mechanical engineering basic research overall will continue to be strong. Contributions of U.S. mechanical engineers to journal articles will increase, but so will the contributions from other growing economies such as China and India. At the same time, the supply of U.S. mechanical engineers is in jeopardy, because of declines in the number of U.S. citizens obtaining advanced degrees and uncertain prospects for continuing to attract foreign students. U.S. funding of mechanical engineering basic research and infrastructure will remain level, with strong leadership in emerging areas.

Suggested Citation:"Summary ." National Research Council. 2007. Benchmarking the Competitiveness of the United States in Mechanical Engineering Basic Research. Washington, DC: The National Academies Press. doi: 10.17226/12055.
×
Page 1
Suggested Citation:"Summary ." National Research Council. 2007. Benchmarking the Competitiveness of the United States in Mechanical Engineering Basic Research. Washington, DC: The National Academies Press. doi: 10.17226/12055.
×
Page 2
Suggested Citation:"Summary ." National Research Council. 2007. Benchmarking the Competitiveness of the United States in Mechanical Engineering Basic Research. Washington, DC: The National Academies Press. doi: 10.17226/12055.
×
Page 3
Suggested Citation:"Summary ." National Research Council. 2007. Benchmarking the Competitiveness of the United States in Mechanical Engineering Basic Research. Washington, DC: The National Academies Press. doi: 10.17226/12055.
×
Page 4
Suggested Citation:"Summary ." National Research Council. 2007. Benchmarking the Competitiveness of the United States in Mechanical Engineering Basic Research. Washington, DC: The National Academies Press. doi: 10.17226/12055.
×
Page 5
Suggested Citation:"Summary ." National Research Council. 2007. Benchmarking the Competitiveness of the United States in Mechanical Engineering Basic Research. Washington, DC: The National Academies Press. doi: 10.17226/12055.
×
Page 6
Next: 1 Introduction »
Benchmarking the Competitiveness of the United States in Mechanical Engineering Basic Research Get This Book
×
Buy Paperback | $42.00 Buy Ebook | $33.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Mechanical engineering is critical to the design, manufacture, and operation of small and large mechanical systems throughout the U.S. economy. This book highlights the main findings of a benchmarking exercise to rate the standing of U.S. mechanical engineering basic research relative to other regions or countries. The book includes key factors that influence U.S. performance in mechanical engineering research, and near- and longer-term projections of research leadership.

U.S. leadership in mechanical engineering basic research overall will continue to be strong. Contributions of U.S. mechanical engineers to journal articles will increase, but so will the contributions from other growing economies such as China and India. At the same time, the supply of U.S. mechanical engineers is in jeopardy, because of declines in the number of U.S. citizens obtaining advanced degrees and uncertain prospects for continuing to attract foreign students. U.S. funding of mechanical engineering basic research and infrastructure will remain level, with strong leadership in emerging areas.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!