Cover Image


View/Hide Left Panel

educated in the United States remain among the best trained and most flexible in the world. At a time when other nations are making significant efforts to upgrade their engineering education capabilities, the United States will be challenged to sustain engineering education as a national asset.

It was clear from the workshop discussions that participants from both industry and academia consider U.S. engineering education a valuable asset. It is also clear that other countries and regions, most prominently China and India, are working hard to upgrade their engineering education capabilities. In addition, large numbers of students from China and India continue to come to the United States for graduate engineering education.

Workshop participants repeatedly stressed that U.S. engineers will need better management and communications skills and that engineers who master the principles of business and management will be rewarded with leadership positions. The same needs have been stressed in reports and statements by professional societies and reports from the NAE Engineer of 2020 Project (NAE, 2004, 2005).

FINDING 5. Although individual engineers must ultimately take responsibility for their own careers, industry, government, universities, professional societies, and other groups with a stake in the U.S. engineering enterprise should consider supporting programs and other approaches to helping engineers manage their careers, renew and update their skills, and sustain their capacity to innovate, create, and compete.

A continuing theme in the workshop discussions was the effect of offshoring on engineers whose jobs are vulnerable, even though their wages may be increasing. For example, in the semiconductor industry, wages are increasing, but very slowly (see Brown and Linden, this volume). The environment for engineering work has changed significantly as organizations grow and shrink and jobs are gained and lost. Some engineers who are proactive in keeping their skills up to date and are able to take advantage of the trend toward more frequent job and career shifts are adapting well. But many workshop participants called for renewed efforts on the part of all stakeholders in U.S. engineering—educators, government, professional societies, and employers—to address the needs of mid-career engineers who need help developing new skills and abilities for a constantly changing job market.

In addition to educational approaches to ameliorating the effects of offshoring, many have called for direct assistance to engineers and other service workers whose jobs are displaced. Approaches that have been discussed include (1) expanding eligibility for Trade Adjustment Assistance to include engineers and other service-industry workers and (2) providing some form of wage insurance to help displaced workers who are forced to take lower paying jobs.

FINDING 6. Over the past several decades, engineering has become less attractive to U.S. students as a field of study and as a career compared to some other professions. Although it is widely assumed that globalization and offshoring are contributing to this relative decline in popularity, it is impossible to know how important globalization is compared to other factors. A great deal more needs to be understood about the relationship between offshoring and the attractiveness of engineering as a career.

Concerns were raised repeatedly about whether offshoring is negatively affecting the public perception of engineering and whether this perception has led (and will lead) to fewer talented U.S. students choosing to pursue careers in engineering. We do not have enough data at this point either to support or allay these concerns. We do know, however, that over the past several decades, the relative popularity of engineering as a major has declined in comparison with other fields that have experienced strong long-term growth. The committee believes that this issue should be thoroughly investigated.


FINDING 7. For the United States, attracting and retaining world-class engineering activities in an increasingly competitive global environment will require that core U.S. strengths be sustained. Perhaps the most critical task in doing so will be to avoid complacency.

Workshop participants pointed out the strengths of the United States and argued that the biggest risk to future success is complacency. Public and private efforts to tackle large-scale problems, for example in energy and transportation, could lead to the creation of entirely new industries and would go a long way toward creating new opportunities for engineers.

FINDING 8. Plausible scenarios have been developed showing that offshoring either helps, is neutral, or hurts engineering in the United States. Only continued discussions and further studies will lead to a thorough understanding of the potential benefits and costs of offshoring.

Offshoring in general, and offshoring of engineering in particular, has both costs and benefits, although we cannot paint a clear picture of these based on available data. Nevertheless, the workshop did provide a basis for making general statements about the costs and benefits so far.

On the benefit side, offshoring appears to be adding to the competitiveness and profitability of the U.S.-based companies that manage it effectively. In addition, it has long been assumed that globalization and trade in services will ultimately yield net benefits for the U.S. economy. If offshoring is like other forms of trade in this respect, it too

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement