4
Energy Efficiency

The United States is the world’s largest consumer of energy. In 2006, it was responsible for some 20 percent of global primary energy consumption, while its closest competitor, China, used 15 percent (IEA, 2009). But given the energy-security concerns over oil imports, recent volatility in energy prices, and the greenhouse gas emissions associated with energy consumption, using energy more efficiently has become an important priority. Fortunately, the potential for higher energy efficiency1 is great.

This chapter focuses on the technologies that could increase energy efficiency over the next decade. It describes their state of development, the potential for their use, and their associated performance, costs, and environmental impacts. For these technologies to make a difference, however, they will have to be widely adopted. Hence, the chapter also addresses the sometimes formidable barriers to achieving such market penetration (see Box 4.1 for examples) and the experience that has been gained with policies and programs aimed at overcoming these barriers.

In fact, continued technological advances make energy efficiency a dynamic resource. When new efficient or otherwise advanced technologies reach the market, they hold the potential for reducing the then current level of energy use or moderating its growth. This chapter reviews some of these advanced technologies—some of which could become available and cost-effective in the

1

The terms “energy efficiency” and “energy conservation” are often used interchangeably, but even though both can save energy, they refer to different concepts. Improving energy efficiency involves accomplishing an objective, such as heating a room to a certain temperature, while using less energy. Energy conservation involves doing something differently and can involve lifestyle changes—e.g., lowering the thermostat. This chapter primarily discusses energy efficiency.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 135
4 Energy Efficiency T he United States is the world’s largest consumer of energy. In 2006, it was responsible for some 20 percent of global primary energy consumption, while its closest competitor, China, used 15 percent (IEA, 2009). But given the energy-security concerns over oil imports, recent volatility in energy prices, and the greenhouse gas emissions associated with energy consumption, using energy more efficiently has become an important priority. Fortunately, the poten- tial for higher energy efficiency1 is great. This chapter focuses on the technologies that could increase energy efficiency over the next decade. It describes their state of development, the potential for their use, and their associated performance, costs, and environmental impacts. For these technologies to make a difference, however, they will have to be widely adopted. Hence, the chapter also addresses the sometimes formidable barriers to achieving such market penetration (see Box 4.1 for examples) and the experience that has been gained with policies and programs aimed at overcoming these barriers. In fact, continued technological advances make energy efficiency a dynamic resource. When new efficient or otherwise advanced technologies reach the market, they hold the potential for reducing the then current level of energy use or moderating its growth. This chapter reviews some of these advanced technologies—some of which could become available and cost-effective in the 1The terms “energy efficiency” and “energy conservation” are often used interchangeably, but even though both can save energy, they refer to different concepts. Improving energy efficiency involves accomplishing an objective, such as heating a room to a certain temperature, while using less energy. Energy conservation involves doing something differently and can involve lifestyle changes—e.g., lowering the thermostat. This chapter primarily discusses energy efficiency. 135

OCR for page 135
136 America’s Energy Future BOX 4.1 Why Energy Efficiency Opportunities Aren’t More Attractive to Consumers and Businesses Why don’t consumers and businesses take greater advantage of cost-effective energy efficiency opportunities? If so much energy can be saved, why doesn’t every- one do it, especially when the cost savings over time tend to well outweigh the initial costs? The answer is complex, as there is no one reason for this seeming behavior gap. Each of this chapter’s sector discussions, as well as the policy discussion at the end of the chapter, identify factors—commonly called barriers—that impede the full uptake of energy efficiency technologies and measures. They fall into several categories, but the following examples illustrate how some of them affect decisions: Cost savings may not be the only factor influencing a decision to invest in an energy efficiency measure. For example, consumers purchase vehicles based on many factors, such as size, performance, and interior space, in addition to fuel economy. In reality, fuel economy may not come into the picture at all. Although energy and cost savings might be achievable with only a low first cost (investment), such savings may be a small-enough part of the family or company budget that they are not really relevant to economic decisions. The up-front financial investment might be small, but substantial investments of time and effort may be required to find and study information about potential energy-saving technologies, measures, and actions. It is well established that purchasers tend to focus much more on first costs than on life-cycle costs when making investments. This behavior is no dif- ferent when it comes to energy efficiency. There is also the phenomenon of risk aversion—new products may be unfamiliar or not work as expected. The default behavior is often simply the status quo. Knowing this, producers may never design and develop energy-efficient products. Some of the behavior gap can be attributed to economic structural issues. For example, landlords of rental residential buildings are not motivated to pay for 2020–3035 timeframe and beyond—and the research and development (R&D) needed to support their development. ENERGY USE IN THE UNITED STATES AND THE POTENTIAL FOR IMPROVED ENERGY EFFICIENCY In 2008, the United States used 99.4 quadrillion Btu (quads) of primary energy (see Figure 4.1). About 31 percent of this total was consumed in industry,

OCR for page 135
137 Energy Efficiency technologies that are more efficient when their tenants pay the utility bills. And builders whose incentive is to minimize the cost of new homes may not offer highly efficient appliances that increase purchase prices but save buyers money over time. Other factors may involve retailers of equipment and appliances. If there is low demand for efficient products, retailers may not stock them. Even purchas- ers who might be motivated to search elsewhere for an efficient product may have to deal with limited choices in the event of an emergency purchase, such as when a refrigerator fails. Other reasons for the behavior gap are the subject of much social science research. They involve factors such as habits in purchasing or use, which can be very difficult to change. Some apparent consumer preferences—typically learned from parents, neighbors, and friends—may change very slowly, if at all. Energy-savings investments by businesses and industries are not always seen as beneficial. If energy accounts for only a small part of total costs, or if the avail- able capital is limited, other investments may be preferred—e.g., in reducing other costs, improving products, or developing new ones. If the consequences of a new-product or production-method failure are large, this in itself can maintain the status quo. Firms may not be aware of the potential savings achievable by replacing equipment, such as older motors, with more efficient or variable-speed ver- sions. When motors, large or small, are used throughout a facility, the savings from upgrading them can be substantial. Energy efficiency investments by companies are made in the context of com- plex business cultures. “Champions,” or commitment at the highest levels, may be required. More details on how barriers such as these play out in the buildings, transporta- tion, and industrial sectors are given later in this chapter. 28 percent in transportation activities, and about 41 percent in the myriad activi- ties and services associated with residential and commercial buildings. Figure 4.2 provides more detail, breaking out energy consumption by source and sector and also defining “primary” energy. Energy use in the United States has grown steadily since 1949, with the exception of a dip in the mid-1970s during the oil crisis. Energy consumption today is double what it was in 1963 and 40 percent higher than it was in 1975 (the low point following the oil crisis). But there has also been progress in increas- ing the efficiency of energy use. The nation’s energy use per dollar of gross domes-

OCR for page 135
138 America’s Energy Future Residential Buildings 22% (21.6 Quads) Transportation 28% (28 Quads) Commercial Buildings 19% (18.5 Quads) Industry 31% (31.3 Quads) FIGURE 4.1 Total U.S. energy use by sector, 2008 (quadrillion Btu, or quads). Notes: For each sector, “total energy use” is direct (primary) fuel use plus purchased elec- tricity plus apportioned electricity-system losses. Economy wide, total U.S. primary energy use in 2008 was 99.4 quads. Source: EIA, 2009a, as updated by EIA, 2009b. tic product (GDP) has been cut in half since 1973, with about 70 percent of that decline resulting from improvements in energy efficiency (IEA, 2004). Neverthe- less, the absolute amount of energy used continues to rise. Yet the potential for higher energy efficiency is large, as illustrated by two points. First, despite the impressive gains made by the United States over the last 30 years, almost all other developed nations use less energy per capita and less energy per dollar of GDP (see Table 4.1 and Figure 1.5 in Chapter 1). Denmark’s levels of usage, for example, are about half on both measures. While there are structural variations that account for part of this gap, some 50 percent of it results from differences in energy efficiency (Weber, 2009). The second point is that a greater number of energy-efficient and cost- effective technologies are available today to supply such services as lighting, heat- ing, cooling, refrigeration, transport, and computing—all of which are needed throughout the economy and constitute the underlying driver of the demand for energy. Hundreds of realistic and demonstrated technologies, some already

OCR for page 135
139 Energy Efficiency Energy Consumption by Source: Buildings Electricity Consumption by Sector (Total: 40.1 Quads) (Total, including losses: 40.1 Quads) Industry al Gas 26% Electricity 73% Other 2% Petroleum 4% Buildings 74% Energy Consumption by Source: Industry Natural Gas Consumption by Sector (Total: 31.3 Quads) (Total: 17 Quads) Other Industry Transportation 48% 4% Petroleum 28% Natural Gas 26% Electricity Buildings 34% 48% Energy Consumption by Source: Transportation Petroleum Consumption by Sector (Total: 28 Quads) (Total: 39.7 Quads) ldings her % Petroleum 97% Industry 23% Transportation 72% FIGURE 4.2 U.S. energy consumption by source and end-use sector, 2008 (quads). Note: Does not include consumption in the electric power sector. Electricity includes delivered electricity as well as the allocated losses incurred in the generation, transmis- sion, and distribution of electricity. “Delivered” energy refers to the electricity delivered to a site plus the fuels used directly on site (e.g., natural gas for heating water). This measure does not account for the losses incurred in generating, transmitting, and distrib- uting the electricity. Delivered energy plus these losses is referred to as “primary” energy. Source: EIA, 2009a, as updated by EIA, 2009b.

OCR for page 135
140 America’s Energy Future TABLE 4.1 Energy Use in 2006, per Capita and per Dollar of GDP (2000 Dollars) Million Btu Btu per per Person Dollar of GDP Denmark 161 4971 Germany 178 7260 Japan 179 4467 France 181 7767 United States 335 8841 Source: DOE, 2006b. commercial and some just beginning to enter the market, can provide these ser- vices more efficiently than is the case today, and they can collectively save large amounts of energy. This chapter documents the AEF Committee’s review of the performance, costs, and environmental impacts—primarily greenhouse gas emissions2—of energy-efficient technologies and processes that are currently ready for imple- mentation; technologies that need some further development; and scientific con- cepts that promise major efficiency improvements in the future. The assessment followed the traditional organization of energy use into three sectors: buildings (both residential and commercial), transportation, and industry. Further, each was considered over three timeframes—the present to 2020, 2020 to 2035, and 2035 to 2050. The first period received major attention because so many cost-effective technologies are ready for implementation today or will be ready within a few years. The committee examined the available energy efficiency literature and per- formed additional analyses with primary data. The committee was able to estimate energy efficiency supply curves for electricity and natural gas in the residential and commercial sectors, showing the amount of energy that could be saved over a range of costs. In the transportation sector, the committee focused on alterna- tive technologies that could power the nation’s cars and light trucks. By estimating the costs and energy savings associated with each technology as R&D improved 2Although greenhouse gas emissions are the primary environmental impact considered here, it should be noted that the evaluation of a specific application of a technology or measure should consider any other effects, including local effects, on the environment and natural resources.

OCR for page 135
141 Energy Efficiency it over time, and the timeframes in which specific technologies can be expected to penetrate the market, the committee was able to develop illustrative scenarios of how total energy consumption could evolve. Confronted with myriad, diverse manufacturing industries, the committee focused on the five most energy-intensive industries. The committee examined other technologies, although in less detail. For each sector, comparisons were made to a baseline, or business-as-usual, case in order to derive the potential for energy savings. For the buildings and industrial sectors, this was the reference-case scenario of the U.S. Energy Infor- mation Administration’s (EIA’s) Annual Energy Outlook 2007 or 2008 (EIA, 2007a, 2008161). For the transportation sector, a committee-directed baseline was derived. In all cases, though, the study estimates the level of energy-efficiency improvement beyond the baseline or reference case. More details can be found in the report titled Real Prospects for Energy Efficiency in the United States (NAS- NAE-NRC, 2009). ENERGY EFFICIENCY IN RESIDENTIAL AND COMMERCIAL BUILDINGS Energy Use in U.S. Buildings In 2006, the United States had approximately 81 million single-family homes, 25 million multifamily housing units, 7 million mobile homes, and 75 billion square feet of floor space contained within 5 million commercial buildings (EIA, 2008). The building stock is long-lived; homes last 100 years or more, commercial build- ings often last 50 years or more, and appliances used in buildings last 10 to 20 years. In 2008, residential and commercial buildings accounted for 73 percent of total electricity use in the United States and 40 percent of total primary energy use (Figures 4.1 and 4.2). Use of delivered energy in the residential sector increased by 15 percent from 1975 to 2005, and in the commercial sector it grew by 50 percent. Meanwhile, primary energy grew by 46 percent and 90 percent, respectively, in the residential and commercial sectors. Despite these increases, energy “intensity” energy use per unit of service or activity decreased over that time span. In the residential sector, on-site energy intensity, measured as energy use per household, fell by about 33 percent during 1978–2001, while primary energy use per household declined by 20 percent. In the commercial sector, on-site energy intensity, measured as energy use per square foot of floor area, dropped by about

OCR for page 135
142 America’s Energy Future 20 percent during 1979–2003, while primary energy use per square foot decreased by 6 percent. The difference between on-site and primary-energy-use growth rates was due to growing electrification, which engendered sizable generating, transmit- ting, and distributing losses. Factors that have affected energy use in buildings over the last several decades include increased electrification, population shifts to milder climates, growing penetration of appliances and electronics, larger home sizes, smaller households, growing household incomes, and dramatic improvements in the energy efficiency of appliances and other equipment. The last item is a key factor in the decline in energy intensity of buildings over the past 30 years. For example, the average electricity use of new refrigerators sold in 2007 was 71 percent less than that of new refrigerators sold in 1977 (AHAM, 2008), despite their becom- ing larger and having more features. Significant energy efficiency gains have also been made in lighting. Sales and use of compact fluorescent lamps, which consume about 75 percent less electricity per unit of light output than incandescent lamps consume, have greatly increased in the past decade. In commercial buildings, energy-efficient fluorescent lighting fixtures containing T8 fluorescent lamps and high-frequency electronic lamp ballasts use 15–30 percent less energy per unit of light out- put than do older fixtures with T12 lamps and electromagnetic ballasts. These devices also have been used increasingly in recent years, as periodic surveys by the EIA attest. However, a large fraction of commercial buildings still have not embraced common energy efficiency measures such as energy management and control systems. The adoption of ENERGY STAR®-labeled products has also grown substan- tially in recent years. For example, the construction and certification of ENERGY STAR® new homes increased from about 57,000 in 2001 to 189,000 in 2006, or 11.4 percent of all new homes built that year. Energy Efficiency Improvement in Buildings Many studies, whether on the local, regional, national, or global levels, have esti- mated the potential for improved energy efficiency in buildings.3 For the most part, these efforts evaluate the quantity of savings that could be realistically 3Citations to these studies are given in NAS-NAE-NRC (2009).

OCR for page 135
143 Energy Efficiency achieved as a function of the cost of the saved energy, and they generally show consistent findings despite differences in assumptions and approaches. Across the two building sectors, the studies demonstrate a median technical potential for improved energy efficiency of 33 percent for electricity (32 percent for the residential sector and 36 percent for the commercial sector) and 40 per- cent for natural gas (48 percent for residential and 20 percent for commercial), after accounting for energy prices and implementation barriers. The median cost- effective and achievable potential is 24 percent for electricity (26 percent for resi- dential and 22 percent for commercial). For natural gas, this measure is 9 percent (9 percent for residential and 8 percent for commercial), but it could increase con- siderably as gas prices rise or could decrease as gas prices fall. These studies have limitations, however, and care must be taken in their use. The question, How much efficiency is available at what price? is not well framed because “available” is ambiguous for several reasons. Among them are the timeframe over which the potential applies, the level of incentive required, and the motivation of society. In addition, the studies can underestimate the poten- tial because of biases that might, among other things, exclude new and emerging technologies, hold technology static, or fail to consider nonenergy benefits. Con- versely, the studies may overestimate savings by being excessively optimistic about energy efficiency potential. Nevertheless, the potential for cost-effective energy efficiency improvements in buildings is large. And the prospects for savings will grow as new technologies become available, existing technologies are refined, and energy efficiency measures begin to be implemented in an integrated manner—often, with synergistic effects (such as those that can result from a whole-building approach to building design). Approaches to Understanding Efficiency Potential Analysts have developed a variety of ways to investigate the technologies and design principles that could make buildings more efficient. The two most impor- tant are the integrated approach and the technology-by-technology approach. Integrated Approach An integrated (also known as a whole-building or system-wide) approach to improving energy efficiency considers the energy consumption, and the set of improvements that could save energy, for entire buildings. It accounts for the abil- ity to reduce energy use through design considerations such as incorporation of

OCR for page 135
144 America’s Energy Future day lighting or reorientation or strategic placement of equipment to reduce heat- ing and cooling loads—as well as through high-efficiency systems and equipment. For residential buildings, a whole-house approach using a cost-effective- ness criterion can result in savings of 50 percent or more in heating and cooling and 30–40 percent reductions in total energy use. This conclusion is supported by the fact that more than 8,000 single-family households applied for the federal tax credit for 50 percent savings during its first year of availability. For 2008, the number of qualifying homes grew to more than 23,000, about 4.6 percent of all homes built. There are examples in Europe of new residences that have achieved even lower levels of energy consumption.4 For commercial buildings, several studies have reviewed the small but growing number of structures that have achieved 50 percent reductions in the energy needed for heating, cooling, and water heating. Most of these buildings have relied on High-efficiency electrical lighting systems, which use state-of-the-art lamps, ballasts, and luminaires (complete lighting fixtures) Luminaires chosen to provide the desired amount of lighting in the right places, coupled with the use of natural day lighting and associated con- trols that limit electrical lighting correspondingly Fenestration (window) systems that reduce heat gains while providing daylight Heating, ventilation, and air-conditioning controls that provide effective operation of the system during part-load conditions. A few low-energy buildings have also made use of such on-site generation options as combined heat and power (CHP) systems5 or solar photovoltaic (PV) systems.6 This whole-building approach is usually applied to new buildings, but in some cases it can be used to identify the potential for system-wide savings in exist- ing buildings. 4See, for example, www.businessweek.com/globalbiz/content/apr2007/gb20070413_167016.htm. 5Combined heat and power (CHP) units transform a fuel (generally natural gas) into electric- ity and then use the remaining heat for applications such as space and hot-water heating or in- dustrial and commercial processes. 6See the “Getting to Fifty” website, www.newbuildings.org/gtf.

OCR for page 135
145 Energy Efficiency End-Use and Technology Approach Some integrated approaches for example, strategic placement of ductwork are most easily applied to new buildings. A second approach, useful for existing build- ings, relies on the one-by-one review of major categories of energy use and consid- eration of the types of efficiency measures and technologies that could be applied to them. For example, efficiency in the provision of space heating and cooling could be raised by upgrading furnaces, using variable-speed motors, reducing leak- age, increasing insulation, and applying other measures, most of which could be incorporated into existing buildings. This technology-by-technology approach can be carried out on as detailed or disaggregated a level as desired. A drawback is that it misses the kinds of inte- grated measures that can be identified with the whole-building approach. Potential for Efficiency Improvement: Conservation Supply Curves Developing conservation supply curves, which have been used widely in analyses of energy use in buildings to display the results of technology-by-technology or measure-by-measure assessments, involves evaluating a comprehensive list of measures that could be taken and ranking them in order of the cost of conserved energy (CCE).7 Each measure is evaluated not in isolation but in the context of the measures that have already been taken. Most of the studies reviewed for this report relied on the technology-by-technology approach to develop supply curves for both residential and commercial buildings. To reconcile the results across stud- ies, this report integrates and updates these data to produce new conservation sup- ply curves that can be applied at the national level. The reference-case scenario of the EIA’s Annual Energy Outlook 2007 (EIA, 2007a) is used as the baseline for this analysis,8 which mostly involves technolo- 7As explained at the beginning of this chapter, the terms “energy efficiency” and “energy con- servation” are often used interchangeably, but even though both can save energy, they refer to different concepts. This chapter discusses energy efficiency. However, the traditional term for a graph of the amount of energy that can be saved through energy efficiency measures at different prices is “conservation supply curve.” The cost of these measures has traditionally been referred to as the cost of conserved energy. The traditional terminology has been retained in this section, but the fact that the curves refer to energy efficiency improvements should be kept in mind. 8The reference case of the Annual Energy Outlook 2008, which is used in some other parts of this report, has slightly different assumptions from those in the AEO 2007 reference case (e.g., slower growth in the housing stock). But because of other factors embedded in the assessment

OCR for page 135
200 America’s Energy Future California first enacted efficiency standards for major types of appliances, as well as for new residential and commercial buildings, in the mid-1970s. These standards have been updated many times since then and have been extended to additional appliances. California also adopted a number of policies intended to stimulate utility energy efficiency programs. They included the decoupling of utility profits from sales, the inclusion of efficiency as part of integrated resource planning, and the creation of performance incentives to meet or exceed efficiency targets. Califor- nia’s investor-owned utilities spent in excess of $600 million per year to promote more efficient electricity use by their customers as of 2007.26 They can now earn a profit on these expenditures through the performance-based incentive program. The combination of appliance standards, building energy codes, and utility efficiency incentives has resulted in considerable electricity savings in California. It is estimated that these initiatives have saved a total of some 40,000 GWh per year as of 2003, equivalent to about 15 percent of actual electricity use in the state that year (CEC, 2007). New York New York State has a long history of implementing policy actions to encourage more efficient use of energy across all sectors. They have included adoption and continual updating of building codes and appliance standards, for example, and well-funded research and development programs. Consequently, New York has maintained a relatively flat level of total energy use per capita (about 36 percent lower than the national average in 2005) for the past 30 years (see Figure 4.8). New York’s energy efficiency programs targeting energy consumers are designed to promote behavioral changes that favor adoption of a greater num- ber of energy efficiency technologies, appliances, and services. Programs directed at electric utilities include the implementation of utility-run DSM efforts and a revenue-decoupling mechanism to allow utilities to recover revenues lost from reductions in energy demand due to efficiency measures. As a result of its energy efficiency initiatives since 1990, New York has lowered its annual electricity use by nearly 12,000 GWh, or about 8 percent (New York Energy $mart Annual Evaluation and Status Report, 2008). 26These utilities provide service to about 75 percent of the state’s population. The remainder is served by municipal utilities and other public agencies.

OCR for page 135
201 Energy Efficiency Lessons Learned The experiences of these two states in particular show that well-designed policies can overcome barriers to the use of energy-efficient technologies and can result in substantial energy savings. This is clear from the estimates in Table 4.11. Minimum efficiency standards can be a very effective strategy for stimulat- ing energy efficiency improvements on a large scale, especially if the standards are periodically updated. Such standards should not only be technically and economi- cally feasible but also provide manufacturers with enough lead time to phase out production of nonqualifying products in an orderly manner. Government-funded RD&D has contributed to the development and com- mercialization of a number of important energy efficiency technologies. While technological advancement is always a central objective of such grants, experience demonstrates that more attention should be devoted in the future to commercial- ization and market development. Also, a prudent RD&D portfolio should include high-risk but potentially high-payoff projects as well as those involving incremen- tal improvements and lower risk (NRC, 2001). Financial incentives, including those provided by utilities, can increase the adoption of energy efficiency measures. But these incentives should be carefully designed so as to avoid costly efforts that have little or no incremental impact on the marketplace. Information dissemination, education, and training can raise awareness of energy efficiency measures and improve know-how with respect to energy man- agement, including the successful implementation of building energy codes. In general, energy efficiency policies and programs work best if they are integrated into market-transformation strategies that address the range of barriers present in a particular locale (Geller and Nadel, 1994). In the appliance market, for example, government-funded RD&D helps to nurture and commercialize new technologies; product labeling educates consumers; efficiency standards eliminate inefficient products from the marketplace; and incentives offered by some utilities and states encourage consumers to purchase products that are significantly more efficient than what the minimum standards specify. Energy efficiency policies should be kept in place for a decade or more in order to ensure an orderly development of markets. Meanwhile, policies such as efficiency standards and targets, product labeling, and financial incentives should be periodically revised, as past successes and disappointments have shown. Dynamic policies steadily improved residential appliance efficiency, while stagnant

OCR for page 135
202 America’s Energy Future policies failed to achieve continuing efficiency improvements in cars and light trucks during the 1990s and early part of this decade. GENERAL FINDINGS: REAL PROSPECTS FOR ENERGY EFFICIENCY IN THE UNITED STATES Energy efficiency technology for the buildings, transportation, and industry sectors exists today, or is expected to be developed in the normal course of business, that could save about 30 percent of the energy used in the U.S. economy by 2030. If energy prices remain high enough to motivate investment in energy efficiency, or if public policies have the same effect, energy use could be lower than business-as- usual projections by 15–17 quads by 2020 and by 32–35 quads by 2030. These energy efficiency improvements would save money as well as energy. There are formidable barriers to improving energy efficiency. Overcoming them will require significant public and private support, as well as sustained resource- fulness. The experiences of states provide valuable lessons for national, state, and local policy makers in the leadership skills required and in the policies and pro- grams that are most effective. Particular attention must be paid to buildings, infrastructure, and other long-lived assets. Once an asset is installed, it embodies a level of energy use that is difficult to modify. Thus, it is important to take advantage of windows of opportunity for putting efficient technologies and systems in place. REFERENCES ACEEE (American Council for an Energy-Efficient Economy). 2007. Energy Bill Savings Estimates as Passed by the Senate. Washington, D.C.: ACEEE. Available at http://www. aceee.org/energy/national/EnergyBillSavings12-14.pdf. AHAM (Association of Home Appliance Manufacturers). 2008. Data compiled by the Association of Home Appliance Manufacturers. Washington, D.C. www.aham.org. AISI (American Iron and Steel Institute). 2003. Steel Industry Technology Roadmap: Barriers and Pathways for Yield Improvements. Prepared by Energetics, Inc. for the AISI. Washington, D.C.: AISI. October.

OCR for page 135
203 Energy Efficiency AISI. 2005. Saving One Barrel of Oil per Ton. Washington, D.C.: AISI. October. Alamgir, M., and A.M. Sastry. 2008. Efficient batteries for transportation applications. SAE paper 2008-21-0017. SAE Convergence, Detroit, Mich. October. An, F., and J. DeCicco. 2007. Trends in Technical Efficiency Trade-offs for the U.S. Light Vehicle Fleet. Technical Paper Series No. 2007-01-1325. Society of Automotive Engineers. April. Apte, J., and D. Arasteh. 2006. Window-Related Energy Consumption in the US Residential and Commercial Building Stock. LBNL-60146. Berkeley, Calif.: Lawrence Berkeley National Laboratory. Available at http://gaia.lbl.gov/btech/papers/60146.pdf. Bailey, O., and E. Worrell. 2005. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation. Report LBNL-57451. Berkeley, Calif.: Lawrence Berkeley National Laboratory. September. Bandivadekar, A., K. Bodek, L. Cheah, C. Evans, T. Groode, J. Heywood, E. Kasseris, K. Kromer, and M. Weiss. 2008. On the Road in 2035: Reducing Transportation’s Petroleum Consumption and GHG Emissions. Laboratory for Energy and the Environment Report, Massachusetts Institute of Technology. Battelle (Battelle Memorial Institute). 2002. Toward a Sustainable Cement Industry: Climate Change. Substudy 8 of an independent study commissioned by the World Business Council for Sustainable Development. Columbus, Ohio: Battelle Memorial Institute. Berry, Linda, and Martin Schweitzer. 2003. Metaevaluation of National Weatherization Assistance Program Based on State Studies, 1993−2002. ORNL/CON-488. Oak Ridge, Tenn.: Oak Ridge National Laboratory. February. Brooks, S., B. Elswick, and R. Neal Elliott. 2006a. Combined Heat and Power: Connecting the Gap Between Markets and Utility Interconnection and Tariff Practices (Part I). American Council for an Energy-Efficient Economy (ACEEE) Technical Report IE062. Washington, D.C.: ACEEE. Brooks, S., M. Eldridge, and R. Neal Elliott. 2006b. Combined Heat and Power: Connecting the Gap Between Markets and Utility Interconnection and Tariff Practices (Part II). American Council for an Energy-Efficient Economy (ACEEE) Technical Report IE063. Washington, D.C.: ACEEE. Brown, M.A. 2001. Market failures and barriers as a basis for clean energy policies. Energy Policy 29:1197-1207. Brown, M.A., and S. Chandler. 2008. Governing confusion: How statutes, fiscal policy, and regulations impede clean energy technologies. Stanford Law and Policy Review 19:427-509. Brown, M.A., J. Chandler, M.V. Lapsa, and B.K. Sovacool. 2007. Carbon Lock-In: Barriers to Deploying Climate Change Mitigation Technologies. ORNL/TM-2007/124. Oak Ridge, Tenn.: Oak Ridge National Laboratory.

OCR for page 135
204 America’s Energy Future Brown, M.A., M. Levine, W. Short, and J. Koomey. 2001. Scenarios for a clean energy future. Energy Policy 33:1179-1196. Brown, R., S. Borgeson, J. Koomey, and P. Biemayer. 2008. U.S. Building-Sector Energy Efficiency Potential. Berkeley, Calif.: Lawrence Berkeley National Laboratory. Carter, S. 2001. Breaking the Consumption Habit: Ratemaking for Efficient Resource Decisions. The Electricity Journal 14:66-74. CEC (California Energy Commission). 2007. California Energy Demand: 2008−2018. Staff Revised Forecast, FINAL Staff Forecast, Second Edition. CEC-200-2007-015-SF2, Table 4.2. Sacramento, Calif. November. Clinton, J., H. Geller, and E. Hirst. 1986. Review of government and utility energy conser- vation programs. Annual Review of Energy 11:95-142. Cowart, R. 2001. Efficient Reliability: The Critical Role of Demand-Side Resources in Power Systems and Markets. Report to the National Association of Regulatory Utility Commissioners by the Regulatory Assistance Project. Available at http://www. raponline.org/Pubs/General/EffReli.pdf. Accessed January 11, 2009. Crabtree, G., M. Dresselhaus, and M. Buchanan. 2004. The hydrogen economy. Physics Today 57(12):39-44. Craford, M.G. 2008. High power LEDs for solid state lighting: Status, trends, and chal- lenges. Presented at First International Conference on White LEDs and Solid State Lighting, Tokyo, November 26–30, 2007. DeCanio, S.J. 1993. Barriers within firms to energy-efficient investments. Energy Policy 21(9):906-914. DOE (U.S. Department of Energy). 2000. Energy and Environmental Profile of the U.S. Chemical Industry. Energetics Incorporated. Available at http://www1.eere.energy.gov/ industry/chemicals/tools_profile.html. DOE. 2002. 2002 Manufacturing Energy Consumption Survey. Table 2a. Available at www.eia.doe.gov/emeu/efficiency/mecs_trend_mecs_trend9802.html. DOE. 2005. U.S. Climate Change Technology Program Technology Options for the Near and Long Term. Climate Change Technology Program. Available at www.climate technology.gov. Accessed April 29, 2009. DOE. 2006a. Energy Bandwidth for Petroleum Refining Processes. Energetics, Inc. October. Available at www1.eere.energy.gov/industry/petroleum_refining/bandwidth. html. Accessed April 29, 2009. DOE. 2006b. 2006 Manufacturing Energy Consumption Survey. Available at www.eia.doe. gov/emeu/mecs/mecs2006/2006tables.html. DOE. 2006c. Pulp and Paper Industry Energy Bandwidth Study. Prepared by Jacobs Engineering Group and the Institute of Paper Science and Technology for the American Institute of Chemical Engineers and DOE. Washington, D.C.: DOE. August. Available at http://www1.eere.energy.gov/industry/forest/bandwidth.html.

OCR for page 135
205 Energy Efficiency DOE. 2006d. Weatherization Assistance Program Fact Sheet. Washington, D.C.: DOE Office of Energy Efficiency and Renewable Energy, Weatherization Assistance Program. Available at http://www1.eere.energy.gov/office_eere/pdfs/weatherization_ fs.pdf. DOE. 2007a. Energy Department Determines That Model Commercial Building Code Will Save Energy and Benefit Consumers. Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program. Available at www.energycodes.gov/ implement/determinations_com_news.stm. Accessed April 29, 2009. DOE. 2007b. Impacts. Industrial Technologies Program: Summary of Program Results for CY 2005. Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program. Washington, D.C. DOE. 2007c. Energy and Environmental Profile of the U.S. Petroleum Refining Industry. Prepared by Energetics, Inc., for the U.S. Department of Energy, Industrial Technologies Program. Washington, D.C. November. Available at http://www1.eere. energy.gov/industry/petroleum_refining/analysis.html. DOE. 2008. Solid State Lighting Research and Development Multi-Year Program Plan FY’09–FY’13. Available at www1.eere.energy.gov/buildings/ssl/. DOE. 2009. 2006 Manufacturing Energy Consumption Survey. Washington, D.C. Available at http://www.eia.doe.gov/emeu/mecs/contents.html. EIA (Energy Information Administration). 2007a. Annual Energy Outlook 2007. DOE/ EIA-0383(2007). Washington, D.C.: U.S. Department of Energy, Energy Information Administration. EIA. 2007b. Annual Energy Review 2006. DOE/EIA-0384(2006). Washington, D.C.: U.S. Department of Energy, Energy Information Administration. EIA. 2008. Annual Energy Outlook 2008. DOE/EIA-0383(2008). Washington, D.C.: U.S. Department of Energy, Energy Information Administration. EIA. 2009a. Annual Energy Review 2008. DOE/EIA-0384(2008). Washington, D.C.: U.S. Department of Energy, Energy Information Administration. EIA. 2009b. Monthly Energy Review (July). Washington, D.C.: U.S. Department of Energy, Energy Information Administration. Elliott, R.N., and M. Spurr. 1999. Combined Heat and Power: Capturing Wasted Energy. Washington, D.C.: American Council for an Energy Efficient Economy. EPA (U.S. Environmental Protection Agency). 2007a. Light-Duty Automotive Technology and Fuel Economy Trends: 1975 Through 2007. EPA420-R-07-008. Office of Transportation and Air Quality. EPA. 2007b. ENERGY STAR® and Other Climate Protection Partnership Programs 2006 Annual Report. Office of Air and Radiation.

OCR for page 135
206 America’s Energy Future FEMP (Federal Energy Management Program). 2006. Annual Report to Congress on Federal Government Energy Management and Conservation Programs, Fiscal Year 2005. U.S. Department of Energy. Washington, D.C. Frost & Sullivan. 2008. World Hybrid/Electric Vehicle Battery Markets. MC1812769. June 26. Geller, H. 2003. Energy Revolution: Policies for a Sustainable Future. Washington, D.C.: Island Press. Geller, H., and S. Nadel. 1994. Market transformation strategies to promote end-use effi- ciency. Annual Review of Energy and the Environment 19:301-346. Goldman, C. 2006. Utility experience with real-time pricing. Workshop on Smart Meters and Time-Based Rates, March 15, Lawrence Berkeley National Laboratory. Golove, W.H., and J.H. Eto. 1996. Market Barriers to Energy Efficiency: A Critical Reappraisal of the Rationale for Public Policies to Promote Energy Efficiency. LBL- 38059. Berkeley, Calif.: Lawrence Berkeley National Laboratory. Greene, D.L. 1998. Why CAFE worked. Energy Policy 26:595-614. Griffith, B., N. Long, P. Torcellini, D. Crawley, and J. Ryan. 2007. Energy efficiency improvements that use the best available technologies and practices and integrated whole-building design approaches can, on average, reduce energy consumption by 43%. In: Assessment of the Technical Potential for Achieving Net Zero Energy Buildings in the Commercial Sector. NREL/TP-550-41957. Golden, Colo.: National Renewable Energy Laboratory. Available at http://www.nrel.gov/docs/fy08osti/41957. pdf. Hall, N., C. Best, J. Roth, P. Jacobs, and L. Lutzenhiser. 2005. Assessing markets to design programs that more fully attack key market barriers and take advantage of market opportunities—Why do we continue to miss so many opportunities? Pp. 697-713 in Reducing Uncertainty Through Evaluation. Proceedings of the International Energy Program Evaluation Conference, August, Brooklyn, N.Y. Hedman, B. 2005. CHP market status. Presentation at the Gulf Coast Roadmapping Workshop, April 26. Available at files.harc.edu/Sites/GulfCoastCHP/News/ RoadmapWorkshop2005/GulfCoastCHPOverview.pdf. Accessed April 29, 2009. IEA (International Energy Agency). 2004. Oil Crises and Climate Challenges: 30 Years of Energy Use in IEA Countries. Paris: Organisation for Economic Co-operation and Development (OECD)/IEA. IEA. 2007. Tracking Industrial Energy Efficiency and CO2 Emissions. Paris: IEA. IEA. 2009. Energy Balances by Country/Region. Paris: OECD/IEA. Database available at http://www.iea.org/Textbase/stats/prodresult.asp?PRODUCT=Balances. Accessed June 25, 2009.

OCR for page 135
207 Energy Efficiency IWG (Interlaboratory Working Group on Energy-Efficient and Clean-Energy Technologies). 2000. Scenarios for a Clean Energy Future. ORNL/CON-476 and LBNL-44029. Oak Ridge National Laboratory and Lawrence Berkeley National Laboratory. Johnson, T. 2008. Diesel emission control technology in review. SAE Technical Paper 2008- 01-0069. Warrendale, Pa.: Society of Automotive Engineers. April. Johnson, T. 2009. Diesel emission control in review. SAE Technical Paper 2009-01- 0121. Warrendale, Pa.: Society of Automotive Engineers. April. Koomey, J. 1990. Energy Efficiency Choices in New Office Buildings: An Investigation of Market Failures and Corrective Policies. PhD Thesis. Energy and Resources Group, University of California, Berkeley. Available at enduse.lbl.gov/Info/JGKdissert.pdf. Accessed April 29, 2009. Koomey, J., and R.E. Brown. 2002. The Role of Building Technologies in Reducing and Controlling Peak Electricity Demand. LBNL-49947. Berkeley, Calif.: Lawrence Berkeley National Laboratory. September. Kromer, M., and J. Heywood. 2008. A comparative assessment of electric propulsion systems in the 2030 U.S. light-duty vehicle fleet. SAE Technical Paper 2008-01-0459. Warrendale, Pa.: Society of Automotive Engineers. LBNL (Lawrence Berkeley National Laboratory). 2005. Energy Efficiency Improvement and Cost Saving Opportunities for Petroleum Refineries: An ENERGY STAR® Guide for Energy and Plant Managers. Lawrence Berkeley National Laboratory. Lee, J.J., S.P. Lukachko, and I.A. Waitz. 2004. Aircraft and Energy Use. Encyclopedia of Energy. Volume 1. Elsevier. Lemar, P.L. 2001. The potential impact of policies to promote combined heat and power in U.S. industry. Energy Policy 29:1243-1254. Lovins, A. 1992. Energy-Efficient Buildings: Institutional Barriers and Opportunities. Boulder, Colo.: E-Source. Lutsey, N., and D. Sperling. 2005. Energy efficiency, fuel economy, and policy implications. Transportation Research Record 1941:8-25. Martin, N., N. Anglani, D. Einstein, M. Khrushch, E. Worrell, and L.K. Price. 2000. Opportunities to Improve Energy Efficiency and Reduce Greenhouse Gas Emissions in the U.S. Pulp and Paper Industry. LBNL-46141. Berkeley, Calif.: Lawrence Berkeley National Laboratory. McKinsey and Company. 2007. The Untapped Energy Efficiency Opportunity in the U.S. Industrial Sector. Report prepared for the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. Nadel, S. 2002. Appliance and equipment efficiency standards. Annual Review of Energy and the Environment 27:159-192.

OCR for page 135
208 America’s Energy Future Nadel, S. 2004. Supplementary Information on Energy Efficiency for the National Commission on Energy Policy. Washington, D.C.: American Council for an Energy Efficient Economy. Nadel, S., A. de Laski, M. Eldridge, and J. Kleisch. 2006. Leading the Way: Continued Opportunities for New State Appliance and Equipment Standards. Report ASAP-6/ ACEEE-A062. (Updated from and supersedes report ACEEE-051.) Washington, D.C.: American Council for an Energy-Efficient Economy (ACEEE) and Boston, Mass.: Appliance Standards Awareness Project. March. NAS-NAE-NRC (National Academy of Sciences-National Academy of Engineering- National Research Council). 2009. Real Prospects for Energy Efficiency in the United States. Washington, D.C.: The National Academies Press. NBI (New Buildings Institute). 2008. Getting to Fifty. White Salmon, Wash.: NBI. Available at http://www.newbuildings.org/gtf. New York Energy $mart Annual Evaluation and Status Report. 2008. Available at http:// www.nyserda.org/pdfs/Combined%20Report. NRC (National Research Council). 2001. Energy Research at DOE: Was it Worth It? Washington, D.C.: National Academy Press. NRC. 2002. Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards. Washington D.C.: The National Academies Press. NRC. 2004. The Hydrogen Economy: Opportunities, Costs, and R&D Needs. Washington, D.C.: The National Academies Press. NRC. 2008a. Transitions to Alternative Transportation Technologies: A Focus on Hydrogen. Washington D.C.: The National Academies Press. NRC. 2008b. Review of the Research Program of the FreedomCar and Fuel Partnership: Second Report. Washington, D.C.: The National Academies Press. NREL (National Renewable Energy Laboratory). 2002. Chemical Industry of the Future: Resources and Tools for Energy Efficiency and Cost Reduction Now. DOE/GO- 102002-1529; NREL/CD-840-30969. October. Available at http://www.nrel.gov/docs/ fy03osti/30969.pdf. ORNL (Oak Ridge National Laboratory) and BCA, Inc. 2005. Materials for Separation Technologies: Energy and Emission Reduction Opportunities. Available at http:// www1.eere.energy.gov/industry/imf/pdfs/separationsreport.pdf. Accessed April 29, 2009. OTA (Office of Technology Assessment). 1992. Building Energy Efficiency. Washington, D.C.: U.S. Congress, OTA.

OCR for page 135
209 Energy Efficiency Parker, D.S., J.P. Dunlop, S.F. Barkaszi, J.R. Sherwin, M.T. Anello, and J.K. Sonne. 2000. Towards zero energy demand: Evaluation of super efficiency housing with photovol- taic power for new residential housing. Pp. 1.207-1.223 in Proceedings of the 2000 ACEEE Summer Study on Energy Efficiency in Buildings. Washington, D.C.: American Council for an Energy-Efficient Economy. Rasmussen, T., V. Goepfrich, and K. Horkitz. 2005. Drivers of CFL purchase behavior and satisfaction: What makes a consumer buy and keep buying? In Reducing Uncertainty Through Evaluation: Proceedings of the International Energy Program Evaluation Conference. August. Brooklyn, N.Y., pp. 897-910. Ricardo, Inc. 2008. A Study of Potential Effectiveness of Carbon Dioxide Reducing Vehicle Technologies. Prepared for EPA Office of Transportation and Air Quality. January. Available at http://www.epa.gov/OMS/technology/420r08004a.pdf. Roth, K., and K. McKenney. 2007. Energy Consumption by Consumer Electronics in U.S. Residences. Report No. D5525. Cambridge, Mass.: TIAX, LLC. Savaskan, R.C., S. Bhattacharya, and L.N. Van Wassenhoveet. 2004. Closed-loop supply chain models with product remanufacturing. Management Science 50(February):239- 252. Shipley, A., A. Hampson, B. Hedman, P. Garland, and P. Bautista. 2008. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future. ORNL/TM-2008/224. Oak Ridge, Tenn.: Oak Ridge National Laboratory. Small, K., and K. Van Dender. 2007. Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect. Working Paper 05-06-03. Irvine, Calif.: Department of Economics, University of California. Sudarshan, A., and J. Sweeney. 2008. Deconstructing the “Rosenfeld Curve.” Working paper, draft. Palo Alto, Calif.: Stanford University. June 1. Available at http://peec. stanford.edu/modeling/research/Deconstructing_the_Rosenfeld_Curve.php. Thorp, B.A., and L.D. Murdock-Thorp. 2008. Compelling case for integrated biorefiner- ies. Paper presented at the 2008 PAPERCON Conference, May 4-7, 2008, Dallas, Tex. Norcross, Ga.: Technical Association of the Pulp and Paper Industry. Turner, C., and M. Frankel. 2008. Energy Performance of LEED for New Construction Buildings. White Salmon, Wash.: New Buildings Institute. Available at http://www. newbuildings.org/downloads/Energy_Performance_of_LEED-NC_Buildings-Final_3-4- 08b.pdf. van Oss, H.G. 2005. Background Facts and Issues Concerning Cement and Cement Data. Open-File Report 2005-1152. Washington, D.C.: U.S. Department of the Interior, U.S. Geological Survey. Weber, C.L. 2009. Measuring structural change and energy use: Decomposition of the U.S. economy from 1997 to 2002. Energy Policy 37(April):1561-1570.

OCR for page 135
210 America’s Energy Future Worrell, E., and G. Biermans. 2005. Move over! Stock turnover, retrofit, and industrial energy efficiency. Energy Policy 33:949-962. Worrell, E., and C. Galitsky. 2004. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making An ENERGY STAR® Guide for Energy and Plant Managers. LBNL-54036. Lawrence Berkeley National Laboratory. Worrell, E., and L. Price. 2001. Policy scenarios for energy efficiency improvement in industry. Energy Policy 29(14):1223-1241. Worrell, E., L. Price, N. Martin, C. Hendriks, and L.O. Meida. 2001. Carbon diox- ide emissions from the global cement industry. Annual Review of Energy and the Environment 26:303-329. Xenergy, Inc. 1998. United States Industrial Electric Motor Systems Market Opportunities Assessment. Prepared for the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. Available at http://www1.eere.energy.gov/industry/ bestpractices/pdfs/mtrmkt.pdf. York, D., and M. Kushler. 2006. A nationwide assessment of utility sector energy effi- ciency spending, savings, and integration with utility system resource acquisition. In Proceedings of the 2006 ACEEE Summer Study on Energy Efficiency in Buildings. Washington, D.C.: American Council for an Energy-Efficient Economy.