ENERGY EFFICIENCY IN INDUSTRY

U.S. industrial energy efficiency has improved over the past several decades in response to volatile fossil-fuel prices, fuel shortages, and technological advances, but improving the energy efficiency of the nation’s industrial sector even further is essential for maintaining its viability in an increasingly competitive world. Yet there still remain opportunities to incorporate cost-effective, energy-efficient technologies, processes, and practices into U.S. manufacturing. This section describes the progress made to date and the magnitude of the remaining opportunities, stemming both from broader use of current best practices and from a range of possible advances enabled by future innovations.

Energy Use in U.S. Industry

The U.S. industrial sector is composed of an exceptionally diverse set of businesses and products with a broad range of prospects for energy efficiency. While industry used more than 50 percent of the worldwide delivered energy in 2005, in the United States in 2008 industry’s share was only 31 percent (Figure 4.1), reflecting the high energy intensity of the domestic housing and transportation sectors as well as the net import into the United States of products containing embodied energy. U.S. industrial energy use is substantial: 31.3 quads of primary energy in 2008 (almost a third of the national total) at a cost of $205 billion. In 2006, about 7 quads of this total was dedicated to nonfuel needs, such as petroleum feedstocks for petrochemicals and coke used in the production of steel (DOE, 2009). Industries in the United States use more energy than those of any other G8 nation and about half of the total energy used by China.

The average annual growth of energy use in the U.S. industrial sector is projected to be 0.3 percent out to 2030. Industry’s CO2 emissions are projected to increase more slowly, at 0.2 percent annually (EIA, 2008). These low growth rates are due partly to the presumed updating with more energy-efficient technologies and practices in industry. They also reflect the restructuring of the economy away from energy-intensive manufacturing and toward service- and information-based activities.

The most energy-intensive industries are metals (iron, steel, and aluminum), petroleum refining, basic chemicals and intermediate products, glass, pulp and paper, and nonmetallic mineral products such as cement, lime, limestone, and soda ash. Less energy-intensive industries include the manufacture or assembly of automobiles, appliances, electronics, textiles, food and beverages, and other products.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement