happen through economies of scale and the advance of science and technology, is included in the business-as-usual forecast. Thus, the level of energy efficiency improvement anticipated in the year 2020 relative to today could far exceed 6.3 quads. Prime targets are waste-heat recovery and improved energy-management and integration practices. These are the kinds of cost-saving potential that EIA assumes will be absorbed in the business-as-usual case. Thus, relative to today’s energy efficiency practices, industrial energy efficiency improvements in 2020 could save considerably more energy than the 4.9 quads estimated by McKinsey and Company (2007) if the “naturally occurring” efficiency improvements relative to today’s technology were added on.

Looking beyond 2020, a wide array of advanced industrial technologies could make significant contributions to reducing industrial energy consumption and CO2 emissions. Possible revolutionary changes include novel heat and power sources, as well as innovative processes for new products that take advantage of developments in nanotechnology and micro-manufacturing. Examples include the microwave processing of materials and nanoceramic coatings, which show great potential for boosting the efficiency of industrial processes. In addition, advances in resource recovery and utilization—e.g., aluminum recycling—could reduce the energy intensity of U.S. industry. Many of these approaches provide other benefits as well, such as improved productivity and reduced pollution.

The Role of Innovation

Most of the discussion in this chapter focuses on new technology that lowers industry’s energy use. In some cases, energy savings of greater importance come from adapting the new technologies, such as fuel cells for CHP production, used in other sectors. This role of industry in the development of emerging technologies suggests even greater energy savings than might be apparent from looking at industry’s own energy-use patterns alone. Companies are adopting a much broader view of their energy and environmental responsibilities by, for example, addressing the sustainability of their products and services together with those of their suppliers.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement