• The general class of separation processes is one of the most attractive targets for improving energy efficiency in industry, as some separation processes have thermal efficiencies as low as 6 percent. Much of industrial separation now is done by distillation, especially in the petroleum and chemical industries, and technologies are available that could significantly reduce the energy required for this process. However, attention has recently begun to shift to the development of separation processes based on membranes and other porous materials, which could reduce industry’s energy intensity and total energy use.

  • The industrial sector needs advanced materials that resist corrosion, degradation, and deformation at high temperatures and pressures. Relatively low-energy-intensity materials with particular properties and potential uses, such as composites and nanomaterials for structural applications, could substitute for energy-intensive materials such as steel.

  • Numerous technologies and practices are available that could optimize and improve steam heating and process heating in industrial facilities. Some changes could take place immediately and could reduce natural gas consumption. Even further efficiency gains could result from R&D, particularly on ultrahigh-efficiency boilers. Such boilers, which employ a combination of advanced technologies, could offer considerable efficiency gains over today’s state-of-the-art boilers.

  • Electric motors make up the largest single category of electricity end-use in the U.S. economy. They also offer considerable opportunity for electricity savings, especially in the industrial sector. Based on an inventory of motor systems conducted in 1998 (Xenergy, Inc., 1998), it is estimated that industrial motor energy use could be reduced by 11–18 percent if facility managers undertook all cost-effective applications of proven energy efficiency technologies and practices. Specifically, implementation of all established motor-system energy efficiency technologies and practices that meet reasonable investment criteria could yield annual energy savings of 75–122 billion kWh. A next generation of motor and drive improvements is on the horizon, including motors with high-temperature superconducting materials that could extend savings much further.

  • New fabrication processes could improve yields per unit energy cost for multiple elements of the manufacturing supply chain, reduce waste,



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement