FIGURE 2.2 Estimates of potential natural gas savings in commercial and residential buildings in 2020 and 2030 (relative to 2007) compared to delivered energy from natural gas. The commercial and residential sectors are shown separately. Current (2007) US. delivered energy from natural gas in the commercial and residential sectors, which is used primarily in buildings, is shown on the left, along with projections for 2020 and 2030. To estimate savings, an accelerated deployment of technologies as described in Part 2 of this report is assumed. Combining the projected growth with the potential savings results in lower natural gas consumption in buildings in 2020 and 2030 than exists today. The industrial and transportation sectors are not shown. Delivered energy is defined as the energy content of the electricity and primary fuels brought to the point of use. All values have been rounded to two significant figures.

FIGURE 2.2 Estimates of potential natural gas savings in commercial and residential buildings in 2020 and 2030 (relative to 2007) compared to delivered energy from natural gas. The commercial and residential sectors are shown separately. Current (2007) US. delivered energy from natural gas in the commercial and residential sectors, which is used primarily in buildings, is shown on the left, along with projections for 2020 and 2030. To estimate savings, an accelerated deployment of technologies as described in Part 2 of this report is assumed. Combining the projected growth with the potential savings results in lower natural gas consumption in buildings in 2020 and 2030 than exists today. The industrial and transportation sectors are not shown. Delivered energy is defined as the energy content of the electricity and primary fuels brought to the point of use. All values have been rounded to two significant figures.

Sources: Data from Energy Information Administration (2008) and Chapter 4 in Part 2 of this report.

Opportunities for achieving substantial energy savings exist in the industrial and transportation sectors as well. For example, deployment of energy efficiency technologies in industry could reduce energy use in manufacturing by 4.9–7.7 quads per year (14–22 percent) in 20206 relative to the EIA reference case projection (Figure 2.3). Most of these savings would occur in the pulp and paper, iron

6

These identified savings would provide industry with an internal rate of return on its efficiency investments of at least 10 percent or exceed the company’s cost of capital by a risk premium. See Chapter 4 for additional discussion.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement