increase by 27 percent under business-as–usual conditions, or in the agency’s “high case,”5 to nearly double, after accounting for retirements (IAEA, 2008b). Nonetheless, even in the high-case projections, nuclear power would rise only slightly as a percentage of total electricity generated worldwide—from 14.2 percent in 2007 to 14.4 percent in 2030—assuming business as usual for construction of fossil-fueled plants.

The handful of plants that could be built in the United States before 2020, given the long time needed for licensing and construction, would need to overcome several hurdles, including high construction costs, which have been rising rapidly across the energy sector in the last few years, and public concern about the long-term issues of storage and disposal of highly radioactive waste.6 If these hurdles are overcome, if the first new plants are constructed on budget and on schedule, and if the generated electricity is competitive in the marketplace, the committee judges that it is likely that many more plants could follow these first plants. Otherwise, few new plants are likely to follow.

Existing federal incentives7 for the first few nuclear plants may hasten initial construction. Even if this occurs, nuclear power’s share of U.S. electricity generation is likely to drop over the next few decades. In fact, for nuclear power to maintain its current share—19 percent of U.S. electricity—the equivalent of 21

5

The IAEA’s high estimates (IAEA, 2008b) “reflect a moderate revival of nuclear power development that could result in particular from a more comprehensive comparative assessment of the different options for electricity generation, integrating economic, social, health and environmental aspects. They are based upon a review of national nuclear power programmes, assessing their technical and economic feasibility. They assume that some policy measures would be taken to facilitate the implementation of these programmes, such as strengthening of international cooperation, enhanced technology adaptation and transfer, and establishment of innovative funding mechanisms. These estimates also take into account the global concern over climate change caused by the increasing concentration of greenhouse gases in the atmosphere, and the signing of the Kyoto Protocol.”

6

Both nuclear plants and coal plants with carbon capture and storage (CCS) present intergenerational issues: nuclear plants because of the very long-lived radioactive waste, and coal with CCS because of the need for stored CO2 to remain underground for long periods. However, the timescales differ by orders of magnitude. For radioactive waste, this timescale is on the order of a million years; for CO2 it is likely significantly less because of the availability of natural mechanisms for removing CO2 from the atmosphere (see Ha-Duong and Keith, 2003; Hepple and Benson, 2005).

7

In addition to federal incentives for construction, the first few nuclear plants benefit from incentives for operation, such as the production tax credit. This is discussed in more detail in Box 8.5 in this chapter.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement