through the use of demand-side technologies such as smart metering, may reduce the need for new power-plant construction and improve the utilization of current baseload power plants.

Improvements in the efficiency of today’s spark-ignition and diesel engine LDVs, combined with increased use of hybrid and other advanced vehicle technologies, could reduce these vehicles’ fuel consumption beyond 2020 to below that projected by the EIA (EIA, 2008). The EIA projection, which incorporates the increased fuel-economy standards mandated by the Energy Independence and Security Act (EISA) of 2007, equates to a 30 percent reduction in average fuel consumption (and a 40 percent increase in average fuel efficiency) in new LDVs in 2020 over today’s consumption.7 Exceeding this EIA projection is possible, but only if vehicle manufacturers focus on increasing vehicle fuel economy as opposed to their historic emphasis on increasing vehicle power and size. Figure 2.4 shows projections (described in Chapter 4) that illustrate how improvements in LDV fuel efficiency beyond that projected by the “no-change” reference scenario could further reduce total fuel consumption. These efficiency improvements, which include plug-in hybrid vehicles but not (fully) battery-electric vehicles or hydrogen fuel-cell vehicles, could reduce gasoline consumption by about 1.4 million barrels per day in 2020 and 5.6 million barrels per day in 2035. Of course, these fuel-efficient vehicles will have to be acceptable to consumers. Improvements are also possible in fuel consumption for freight shipping, but projected growth in airline travel is likely to offset improvements in aviation technologies.

Many energy efficiency technologies save money and energy. The cost of conserved energy (CCE) is a useful way to compare the cost of an energy efficiency technology to the cost of electricity and natural gas.8 The range of

7

The EIA (2008) reference case incorporates the EISA corporate average fuel economy (CAFE) standard of 35 miles per gallon (mpg) by 2020. The EIA reference case projects that the fuel economy of new vehicles will reach 36.6 mpg in 2030. As is noted in Chapter 1, the Obama administration recently announced a new national fuel efficiency policy that requires an average fuel economy standard of 35.5 mpg for new light-duty vehicles in 2016.

8

CCE is defined as the levelized annual cost of an energy efficiency measure—that is, the cost of a new technology, or the incremental cost for a more efficient technology compared with a less efficient one—divided by the annual energy savings in kilowatt-hours or British thermal units over the lifetime of the measure. (The levelized annual costs do not include the costs for public policies and programs aimed at stimulating adoption of energy efficiency measures.) The CCE is expressed here in cents per kilowatt-hour (¢/kWh) for electricity efficiency measures and dollars per million British thermal units ($/million Btu) for natural gas efficiency measures. The CCEs presented in this report were computed using a real discount rate of 7 percent.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement