Longer-term planning for new generation and transmission capacity must deal with considerable uncertainty, especially where the industry has been restructured and no one organization holds the ultimate responsibility for building adequate generation. Transmission is still regulated, but transmission planning is dependent on knowing where the new generating plants are going to be located. Computerized planning decision tools must be improved to handle increased uncertainty for the 20- to 30-year time horizon. It is anticipated that renewables will present unique challenges, and the addition of probabilistic methods not in use today may help system operators respond to the changing generation mix.

T&D substations are designed by computerized tools that need to be further coordinated with asset-management tools—inventory management for spare parts and maintenance of all components for example—used by utilities. The two tool sets should be seamlessly coordinated with one another and connected to the operations and operations-planning databases so that customer trouble calls can be coordinated with maintenance crews, spare part inventories, and system operations.

Potential for Future Deployment

Several major conditions must be met before IDST can be effectively implemented. First, modern measurement, communications, and control technologies must be implemented along with the power electronics technologies needed to enable automated controls. In addition, development is needed in applications that integrate advanced visualization technologies with geospatial tools to improve the speed of comprehension and decision making. Some of these technologies could begin to be implemented well before 2020.

Integrating Technologies to Create a Modern Electric T&D System

The key technologies discussed above are in various stages of development, with many already having been deployed in a limited way. However, the primary challenge will be the integrated deployment of these technologies to achieve the desired characteristics and performance of a modern grid. For example, the capabilities of power electronics would be maximized by coupling them with real-time measurement, communications, control, and decision-support tools. Smart meters with two-way communications tied to wireless controllers within the customer’s premises will be needed on distribution systems to maximize the benefits of a modernized transmission system.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement